Warianty tytułu
Języki publikacji
Abstrakty
Propagation of linearly polarized light beams in a nematic liquid crystal cell with distinguished regions of different molecular orientation has been analyzed. Specifically, combination of the planar/homogenic and homeotropic alignment, forming thus spatially limited regions characterized by a different LC molecular orientation, has been tested, as achieved by means of the photo-orientation and photo-polymerization processes, independently. An influence of molecular orientation on the light beam propagation has been checked for different directions of the linear polarization. Thanks to the molecular reorientation induced by the low frequency external electric field and also to the reorientational nonlinearity taking place in NLCs, propagation direction of the light beam can be additionally controlled by the electric bias and/or optical power, respectively. Proposed structural solutions and techniques, related to the photo-orientation and photo-polymerization processes described in this communication, give rise to the novel LC geometries and structures. The latter act as promising candidates for new practical photonic applications as they are expected to be of a particular importance for integrated optic elements and devices.
Czasopismo
Rocznik
Tom
Strony
118--126
Opis fizyczny
Bibliogr. 45 poz., il., rys.
Twórcy
autor
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland, kasia@if.pw.edu.pl
autor
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
autor
- Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
Bibliografia
- [1] I. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena, John Wiley & Sons, 2007.
- [2] J. Whinnery, C. Hu, Y. Kwon, Liquid-crystal waveguides for integrated optics, IEEE J. Quant. Electron. 13 (1977) 262–267.
- [3] G. V. Tkachenko, New Developments in Liquid Crystals, InTech, 2009.
- [4] W. C. Mara, Liquid Crystal Flat Panel Displays: Manufacturing Science &Technology, Springer Science & Business Media, 2012.
- [5] D. Yang, Fundamentals of Liquid Crystal Devices, John Wiley & Sons, 2014.
- [6] L. Vicari, Optical Applications of Liquid Crystals, CRC press, 2016.
- [7] N. V. Kamanina, Features of Liquid Crystal Display Materials and Processes, InTech, 2011.
- [8] V. G. Chigrinov, V. M. Kozenkov, H. Kwok, Photoalignment of Liquid Crystalline Materials: Physics and Applications, John Wiley & Sons, 2008.
- [9] V. Chigrinov, E. Prudnikova, V. Kozenkov, H. S. Kwok, H. Akiyama, T. Kawara, H. Takada, H. Takatsu, Azo-dye aligning layers for liquid-crystal cells, J. Soc. Inf. Disp. 11 (2003) 579–583.
- [10] H. Kwok, V. G. Chigrinov, H. Takada, H. Takatsu, New developments in liquid crystal photo-aligning by azo-dyes, J. Disp. Technol. 1 (2005) 41.
- [11] H. Akiyama, T. Kawara, H. Takada, H. Takatsu, V. Chigrinov, E. Prudnikova, V. Kozenkov, H. Kwok, Synthesis and properties of azo dye aligning layers for liquid crystal cells, Liq. Cryst. 29 (2002) 1321–1327.
- [12] K. A. Rutkowska, G. Assanto, M. A. Karpierz, Discrete light propagation in arrays of liquid crystalline waveguides, Nematicons: Spatial Opt. Solitons Nematic Liquid Cryst. 25 (2012) 5–277.
- [13] A. A. Komar, A. L. Tolstik, E. A. Melnikova, A. A. Muravsky, Optical switch basedon the electrically controlled liquid crystal interface, Appl. Opt. 54 (2015)5130–5135.
- [14] A. Muravsky, V. Agabekov, G. Zhavnerko, U. Mahilny, A. Stankevich, Patterned rubbing alignment technology, SID Sympos. Dig. Tech. Pap. 41 (2010) 1727–1730.
- [15] E. A. Melnikova, A. L. Tolstik, I. I. Rushnova, O. S. Kabanova, A. A. Muravsky, Electrically controlled spatial-polarization switch based on patterned photoalignment of nematic liquid crystals, Appl. Opt 55 (2016) 6491–6495.
- [16] G. Assanto, Nematicons Spatial Optical Solitons in Nematic Liquid Crystals, John Wiley & Sons, 2012.
- [17] G. Assanto, M. Peccianti, C. Conti, Nematicons: optical spatial solitons in nematic liquid crystals, Opt. Photonics News 14 (2003) 44–48.
- [18] M. Peccianti, G. Assanto, Nematicons, Phys. Rep. 516 (2012) 147–208.
- [19] A. Alberucci, A. Piccardi, M. Peccianti, M. Kaczmarek, G. Assanto, Propagation of spatial optical solitons in a dielectric with adjustable nonlinearity, Phys. Rev. A 82 (2010) 023806.
- [20] M. Peccianti, A. Fratalocchi, G. Assanto, Transverse dynamics of nematicons, Opt. Express 12 (2004) 6524–6529.
- [21] M. Peccianti, K. A. Brzdąkiewicz, G. Assanto, Nonlocal spatial soliton interactions in nematic liquid crystals, Opt. Lett. 27 (2002) 1460–1462.
- [22] A. Piccardi, M. Peccianti, G. Assanto, A. Dyadyusha, M. Kaczmarek, Voltage-driven in-plane steering of nematicons, Appl. Phys. Lett. 94 (2009) 091106.
- [23] M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, All-optical switching and logic gating with spatial solitons in liquid crystals, Appl. Phys. Lett. 81(2002) 3335–3337.
- [24] K. Takatoh, M. Sakamoto, R. Hasegawa, M. Koden, N. Itoh, M. Hasegawa, Alignment Technology and Applications of Liquid Crystal Devices, CRC Press, 2005.
- [25] O. Yaroshchuk, Y. Reznikov, Photoalignment of liquid crystals: basics and current trends, J. Mater. Chem. 22 (2012) 286–300.
- [26] V. G. Chigrinov, H. Kwok, H. Hasebe, H. Takatsu, H. Takada, Liquid-crystal photoaligning by azo dyes, J. Soc. Inf. Disp. 16 (2008) 897–904.
- [27] S. R. Nersisyan, N. V. Tabiryan, D. M. Steeves, B. R. Kimball, V. G. Chigrinov, H. S. Kwok, Study of azo dye surface command photoalignment material for photonics applications, Appl. Opt. 49 (2010) 1720–1727.
- [28] J. Osterman, A. P. Tong, K. Skarp, V. Chigrinov, H. S. Kwok, Properties of azo-dye alignment layer on plastic substrates, J. Soc. Inf. Disp. 13 (2005) 1003–1009.
- [29] O. Yaroshchuk, J. Ho, V. Chigrinov, H. Kwok, Azodyes as photoalignment materials for polymerizable liquid crystals, Jpn. J. Appl. Phys. 46 (2007) 2995.
- [30] J. Schirmer, P. Kohns, T. Schmidt-kaler, A. A. Muravski, S. Y. Yakovenko, V. S. Bezborodov, R. Dabrowski, P. Adomenas, Birefringence and refractive indices dispersion of different liquid crystalline structures, Mol. Cryst. Liquid Cryst. 307 (1997) 17–42.
- [31] I. Ostromęcka, M. Kwaśny, P. Jung, B. W. Klus, U. A. Laudyn, Measurements oft he quality of nematic liquid crystal alignment, Photonics Lett. Poland 8(2016) 14–16.
- [32] M. Peccianti, G. Assanto, Observation of power-dependent walk-off via modulational instability in nematic liquid crystals, Opt. Lett. 30 (2005) 2290–2292.
- [33] M. Peccianti, C. Conti, G. Assanto, A. De Luca, C. Umeton, Routing of anisotropic spatial solitons and modulational instability in liquid crystals, Nature 432 (2004) 733–737.
- [34] A. Fratalocchi, A. Piccardi, M. Peccianti, G. Assanto, Nonlinear management of the angular momentum of soliton clusters: theory and experiment, Phys. Rev. A 75 (2007) 063835.
- [35] W. Hu, T. Zhang, Q. Guo, L. Xuan, S. Lan, Nonlocality-controlled interaction of spatial solitons in nematic liquid crystals, Appl. Phys. Lett. 89 (2006) 071111.
- [36] M. Kwasny, A. Piccardi, A. Alberucci, M. Peccianti, M. Kaczmarek, M. A. Karpierz, G. Assanto, Nematicon–nematicon interactions in a medium with tunable nonlinearity and fixed nonlocality, Opt. Lett. 36 (2011) 2566–2568.
- [37] J. Doane, N. Vaz, B. Wu, S.ˇZumer, Field controlled light scattering from nematic microdroplets, Appl. Phys. Lett. 48 (1986) 269–271.
- [38] C. V. Rajaram, S. Hudson, L. Chien, Morphology of polymer-stabilized liquid crystals, Chem. Mater. 7 (1995) 2300–2308.
- [39] H. Ren, Y. Fan, S. Wu, Polymer network liquid crystals for tunable microlens arrays, J. Phys. D 37 (2004) 400.
- [40] H. Ren, S. Wu, Introduction to Adaptive Lenses, John Wiley & Sons, 2012.
- [41] V. Presnyakov, K. Asatryan, T. Galstian, A. Tork, Polymer-stabilized liquid crystal for tunable microlens applications, Opt. Express 10 (2002) 865–870.
- [42] S. Xu, Y. Li, Y. Liu, J. Sun, H. Ren, S. Wu, Fast-response liquid crystal microlens, Micromachines 5 (2014) 300–324.
- [43] H. Ren, Y. Lin, S. Wu, Flat polymeric microlens array, Opt. Commun. 261 (2006) 296–299.
- [44] A. De Souza Gomes, Polymerization, InTech, 2012.
- [45] J. Li, Chien-Hui Wen, S. Gauza, R. Lu, S. Wu, Refractive indices of liquid crystals for display applications, J. Disp. Technol. 1 (2005) 51–61.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9470fa12-419a-45cb-97e5-2f06091bdae1