Czasopismo
2023
|
Vol. 29, No. 1-4
|
27--35
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Biological systems are generally dense reaction-diffusion systems. Therefore, determining the mechanism of motion in such systems is of crucial importance in understanding their dynamics. Subdiffusive behavior is very common in biological systems but its origin usually does not have a clear explanation. One attempt to explain this behavior is the presence of randomly placed stationary obstacles in a medium filled with molecules of a certain medium. With an appropriate concentration of obstacles, the molecules of the medium cease to perform classic Brownian motions and motion becomes subdiffusive. This mechanism seems to be well documented in both simulations and experiments. The question arises whether a similar effect can be obtained in systems where obstacles are not stationary, but their mobility is drastically reduced comparing to medium molecules, or the reduction in mobility is combined with a limitation in movement (the movement of obstacles resembles, for example, the Orestein-Ulhenbeck movement). Is it possible to observe subdiffusion behavior in such a situation? We try to answer this question on the basis of Monte Carlo simulations based on the Dynamic Lattice Liquid (DLL) model. Based on the concept of cooperative movements, this model has a unique feature that allows one to take into account the correlation of movements between the elements that make up the examined system, which is important in the case of high densities due to the strict correlation of movements between the moving elements. The tests concern systems where obstacles were single beads whose mobility was changed with additional restrictions imposed on the displacement. It was shown that no entrapment of medium molecules was observed and a slight deviation from normal diffusion was also shown.
Rocznik
Tom
Strony
27--35
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
- Lodz University of Technology Department of Molecular Physics ul. Zeromskiego 116, 90-924 Łódź, Poland
autor
- University of Warsaw Faculty of Chemistry ul. Pasteura 1, 02-093 Warsaw, Poland, sikorski@chem.uw.edu.pl
Bibliografia
- [1] S. Havlin, D. Ben-Avraham, Diffusion in disordered media, Adv. Phys. 51, 187–292 (2002).
- [2] J. Szymanski, M. Weiss, Elucidating the origin of anomalous diffusion in crowded fluids, Phys. Rev. Let. 103, 038102 (2009).
- [3] F. Höfling, K.-U. Bamberg, T. Franosch, Anomalous transport resolved in space and time by fluorescence correlation spectroscopy, Soft Matter 7, 1358–1563 (2011).
- [4] I.M. Sokolov, Models of anomalous diffusion in crowded environments, Soft Matter 8, 9043–9052 (2012).
- [5] F. Höfling, T. Franosch, Anomalous transport in the crowded world of biological cells, Rep. Prog. Phys. 76, 046602 (2013).
- [6] E. Montroll, G. Weiss, Random walks on lattices. 2, J. Math. Phys. (N.Y.) 6, 167–181 (1965).
- [7] S. Condamin, V. Tejedor, R. Voituriez, O. Bénichou, J. Klafter, Probing microscopic origins of confined subdiffusion by first-passage observables, Proc. Natl. Acad. Sci. USA 105, 5675–5680 (2008).
- [8] R. Metzler, J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep. 339, 1–77 (2010).
- [9] E. Barkai, Y. Garini, R. Metzler, Strange kinetics of single molecules in living cells, Phys. Today 65, 29–35 (2012).
- [10] W.S. Trimble, S. Grinstein, Barriers to the free diffusion of proteins and lipids in the plasma membrane, J. Cell. Biol. 208, 259–271 (2015).
- [11] D. Ben-Avraham, S. Havlin, Diffusion and reactions in fractals and disordered systems, Cambridge University Press, Cambridge (2000).
- [12] F. Höfling, T. Franosch, E. Frey, Localization transition of the three-dimensional Lorentz model and continuum percolation, Phys. Rev. Lett. 96, 165901 (2006).
- [13] T. Bauer, F. Höfling, T. Munk, E. Frey, T. Franosch, The localization transition of the two-dimensional Lorentz model, Eur. Phys. J. Special Topics 189, 103–118 (2010).
- [14] T.O.E. Skinner, S.K. Schnyder, D.G.A.L. Aarts, J. Horbach, R.P.A. Dullens, Localization dynamics of fluids in random confinement, Phys. Rev. Lett. 111, 128301 (2013).
- [15] L.F. Elizondo-Aguilera, M. Medina-Noyola, Localization and dynamical arrest of colloidal fluids in a disordered matrix of polydisperse obstacles, J. Chem. Phys. 142, 224901 (2015).
- [16] F. Camboni, A. Koher, I.M. Sokolov, Diffusion of small particles in a solid polymeric medium, Phys. Rev. E 88, 022120 (2013).
- [17] P. Polanowski, A. Sikorski, Diffusion of small particles in polymer films, J. Chem. Phys. 147, 014902 (2017).
- [18] P. Polanowski, A. Sikorski, Simulation of diffusion in a crowded environment, Soft Matter 10, 3597–3607 (2014).
- [19] P. Polanowski, A. Sikorski, Simulation of molecular transport in systems containing mobile obstacles, J. Phys. Chem. B 120, 7529–7537 (2016).
- [20] I. Bronstein, Y. Israel, E. Kepten, S. Mai, Y. Tal-Shav, E. Barkai, Y. Garini, Transient anomalous dffusion of telomeres in the nucleus of mammalian cells, Phys. Rev. Lett. 103, 018102 (2009).
- [21] S.C. Weber, A.J. Spakowitz, J.A. Theriot, Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm, Phys. Rev. Lett. 104, 238102 (2010).
- [22] H. Berry, H. Chate, Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Uhlenbeck processes, Phys. Rev. E 89, 022708 (2014).
- [23] P. Polanowski, T. Pakula, Studies of polymer conformation and dynamics in two dimensions using simulations based on the Dynamic Lattice Liquid (DLL) model, J. Chem. Phys. 117, 4022–4029 (2002).
- [24] P. Polanowski, T. Pakula, Studies of mobility, interdiffusion, and self-diffusion in two-component mixtures using the Dynamic Lattice Liquid model, J. Chem. Phys. 118, 11139–11146 (2003).
- [25] P. Polanowski, T. Pakula, Simulation of polymer–polymer interdiffusion using the dynamic lattice liquid model, J. Chem. Phys. 120, 6306–6311 (2004).
- [26] B.J. Sung, A. Yethiraj, Lateral diffusion of proteins in the plasma membrane: Spatial tessellation and percolation theory, J. Phys. Chem. B 112, 143–149 (2008).
- [27] J. Kurzidim, D. Coslovich, G. Kahl, Single-particle and collective slow dynamics of colloids in porous confinement, Phys. Rev. Lett. 103, 138303 (2009).
- [28] B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31, 459–466 (1959).
- [29] J.A. Barker, D. Henderson, What is “liquid”? Understanding the states of matter, Rev. Mod. Phys. 48, 587–672 (1976).
- [30] A. Rahman, Correlation in the motion of atoms in liquid argon, Phys. Rev. 136, A405–A411 (1964).
- [31] R. Metzler, J.-H. Jeon, A.G. Cherstvy, E. Barkai, Anomalous diffusion models and their properties: Non-stationary, non-ergodicity, and ageing at the centenary of Single Particle Tracking, Phys. Chem. Chem. Phys. 16, 24128–24164 (2014).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9466e6e6-a6c1-48a0-b2ad-58d428f3ef44