Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | R. 20, nr 3-4 | 142--156
Tytuł artykułu

Investigation of mechanical and tribological behavior of Al 4032-SiHGM MMC

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Badania właściwości mechanicznych i trybologicznych kompozytów metalowych Al 4032-SiHGM MMC
Języki publikacji
EN
Abstrakty
EN
The present study is aimed at identifying the influence of silicon hollow glass microspheres (SiHGM) on a newly engineered metal matrix composite. Silicon micro balloons of various wt.% (2, 4, 6) are reinforced in to aluminium 4032 to produce a composite using the stir casting technique. The mechanical properties of the composite such as hardness, tensile and compressive strength were measured. The dry sliding wear test was conducted on the produced specimens to measure the wear rate and coefficient of friction. The results revealed that the properties of the composite are better with an increase in the wt.% of reinforcement. The presence of reinforcement in the composites was identified using Energy Dispersive X-Ray analysis (EDX). The grain boundaries and grain refinement for various compositions of reinforcements and worn surfaces were analyzed using Scanning Electron Microscope (SEM) micrographs. The process parameters for the minimum wear rate and coefficient of friction were identified and optimized by using the Taguchi L16 orthogonal array. Analysis of variance (ANOVA) was used to determine the percentage contribution of each process parameter. Multi-response optimization was carried out using Grey relational analysis (GRA) to optimize the process parameters to attain a minimum coefficient of friction and wear rate. The variation in wear rate and coefficient of friction are analyzed with respect to reinforcement (wt.%), speed (rpm) and load (N).
Wydawca

Rocznik
Strony
142--156
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Research Scholar, Department of Mechanical Engineering, JNTUK, Kakinada, Andhra Pradesh, India, avinashdattu1@gmail.com
  • Department of Mechanical Engineering, University College of Engineering, JNTUK, Kakinada, Andhra Pradesh, India
  • Department of Mechanical Engineering, Pragati Engineering College, Surampalem, Andhra Pradesh, India
Bibliografia
  • [1] Hiroake N., Kenjie K., Akinori N., Development of aluminum metal matrix composites (Al-MMC) brake rotor and pad, JSAE Rev. 2002, 23, 3, 365-370.
  • [2] Gudimetla A., Sambhu Prasad S., Lingaraju D., Tribological studies of aluminium metal matrix composites with micro reinforcements of silicon and silicon balloons, Mater. Today Proc. 2019, 18, 47-56.
  • [3] Chen Z., Wang T., Zheng Y., Zhao Y., Kang H., Gao L., Development of TiB2 reinforced aluminum foundry alloy based in situ composites - Part I: An improved halide salt route to fabricate Al-5wt%TiB2 master composite, Mater. Sci. Eng. A 2014, 605, 301-309.
  • [4] Schmidt H., Hattel J., Modelling heat flow around tool probe in friction stir welding, Sci. Technol. Weld. Join. 2005, 10, 2, 176-186.
  • [5] Matters Q., Quality Matters Newsletter 2003, II.
  • [6] Balaji G.K., Muthukumaran S., Senthilkumaran S., Pradeep A., Optimization of friction welding of tube-to-tube plate using an external tool with filler plate, J. Mater. Eng. Perform. 2012, 21, 7, 1199-1204.
  • [7] Rengasamy N.V., Rajkumar M., Senthil Kumaran S., Mining environment applications on Al 4032 - Zrb2 and Tib2 in-situ composites, J. Alloys Compd. 2016, 658, 757-773.
  • [8] Çiçek A., Kıvak T., Ekici E., Optimization of drilling parameters using Taguchi technique and response surface methodology (RSM) in drilling of AlSi 304 steel with cryogenically treated HSS drills, J. Intell. Manuf. 2015, 26, 2, 295-305.
  • [9] Lingaraju D., Ramji K., Mohan Rao N.B.R., Rajya Lakshmi U., Characterization and prediction of some engineering properties of polymer - Clay/silica hybrid nanocomposites through ANN and regression models, Procedia Eng. 2011, 10, 9-18.
  • [10] Natarajan S., Narayanasamy R., Kumaresh Babu S.P., Dinesh G., Anil Kumar B., Sivaprasad K., Sliding wear behaviour of Al 6063/TiB2 in situ composites at elevated temperatures, Mater. Des. 2009, 30, 7, 2521-2531.
  • [11] Xiuqing Z., Haowei W., Lihua L., Xinying T., Naiheng M., The mechanical properties of magnesium matrix composites reinforced with (TiB2 + TiC) ceramic particulates, Mater. Lett. 2005, 59, 17, 2105-2109.
  • [12] Pathak J.P., Singh J.K., Mohan S., Synthesis and characterisation of aluminium-silicon-silicon carbide composite, Indian J. Eng. Mater. Sci., 2006, 13, 3, 238-246.
  • [13] Lü L., Lai M.O., Su Y., Teo H.L., Feng C.F., In situ TiB2 reinforced Al alloy composites, Scr. Mater. 2001, 45, 9, 1017-1023.
  • [14] Han Y., Liu X., Bian X., In situ TiB2 particulate reinforced near eutectic Al-Si alloy composites, Compos. - Part A Appl. Sci. Manuf. 2002, 33, 3, 439-444.
  • [15] Wu S., Zone-melted unidirectional solidification of 2001, 6, 225-229.
  • [16] Michael Rajan H.B., Ramabalan S., Dinaharan I., Vijay S.J., Synthesis and characterization of in situ formed titanium diboride particulate reinforced AA7075 aluminum alloy cast composites, Mater. Des. 2013, 44, 438-445.
  • [17] Hassan A.M., Alrashdan A., Hayajneh M.T., Mayyas A.T., Wear behavior of Al-Mg-Cu-based composites containing SiC particles, Tribol. Int. 2009, 42, 8, 1230-1238.
  • [18] Savaşkan T., Bican O., Dry sliding friction and wear properties of Al-25Zn-3Cu-(0-5)Si alloys in the as-cast and heat-treated conditions, Tribol. Lett. 2010, 40, 3, 327-336.
  • [19] Lee J.M., Kang S.B., Han J., Dry sliding wear of MAO-coated A356/20 vol.% SiCp composites in the temperaturę range 25-180°C, Wear 2008, 264, 1-2, 75-85.
  • [20] Rao R.N., Das S., Mondal D.P., Dixit G., Dry sliding wear behaviour of cast high strength aluminium alloy (Al-Zn-Mg) and hard particle composites, Wear 2009, 267, 9-10, 1688-1695.
  • [21] Ramesh C.S., Keshavamurthy R., Channabasappa B.H., Ahmed A., Microstructure and mechanical properties of Ni-P coated Si3N4 reinforced Al6061 composites, Mater. Sci. Eng. A 2009, 502, 1-2, 99-106.
  • [22] Mandal A., Chakraborty M., Murty B.S., Ageing behaviour of A356 alloy reinforced with in-situ formed TiB2 particles, Mater. Sci. Eng. A 2008, 489, 1-2, 220-226.
  • [23] Senthil Kumaran S., Muthukumaran S., Vinodh S., Optimization of friction welding of tube-to-tube plate using an external tool by Taguchi method and genetic algorithm, Int. J. Adv. Manuf. Technol. 2011, 57, 1-4, 167-182.
  • [24] Express M., Example of One-Way ANOVA 2020, 4-6.
  • [25] Zhang D., Chen M., Wu S., Liu J., Amirkhanian S., Analysis of the relationships between waste cooking oil qualities and rejuvenated asphalt properties, Materials (Basel) 2017, 10, 5.
  • [26] Zou S.Y., Huang R., Chi M.C., Hsu H.M., Factors affecting the effectiveness of inorganic silicate sealer material through multi-quality characteristics, Materials (Basel) 2013, 6, 3, 1191-1204.
  • [27] Wojciechowski S., Maruda R.W., Krolczyk G.M., Niesłony P., Application of signal to noise ratio and grey relational analysis to minimize forces and vibrations during precise ball end milling, Precis. Eng. 2018, 51, 582-596.
  • [28] Kasemsiri P., Dulsang N., Pongsa U., Hiziroglu S., Chindaprasirt P., Optimization of biodegradable foam composites from cassava starch, oil palm fiber, chitosan and palm oil using Taguchi method and grey relational analysis, J. Polym. Environ. 2017, 25, 2, 378-390.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9431cfc8-b446-4f1d-80fb-317c8f4859b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.