Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 24, iss. 8 | 133--142
Tytuł artykułu

Utilizing Pyrolysis of Plastic Debris for Refuse-Derived Fuel Production and Viable Substitute to Wood Debris

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research explores the viability of converting discarded Polyethylene Terephthalate (PET) plastic waste into a valuable resource through the implementation of pyrolysis and refuse-derived fuel (RDF) technologies. The objective is to assess the potential of PET charcoal waste as an efficient source for RDF generation, surpassing the energy recovery and recycling potential of PET waste. The study introduces three RDF variants: RDF PET100, RDF PET50, and RDF PET0. RDF PET100 is comprised entirely of PET charcoal, RDF PET50 combines 50% PET charcoal with 50% wood debris, and RDF PET0 consists entirely of wood debris. Comprehensive assessments of water content, ash content, and calorific value were conducted to evaluate the quality of these RDF formulations. Results indicate that RDF PET100 exhibits a water content of 2.63%, ash content of 0.73%, and calorific value of 5,976 MJ/kg. Similarly, RDF PET50 showcases a water content of 3.6%, ash content of 1.05%, and calorific value of 5,587 MJ/kg. RDF PET0 presents a water content of 7.51%, ash content of 1.36%, and calorific value of 4,198 MJ/kg. The outcomes underline the potential of PET plastic waste repurposing through RDF and pyrolysis techniques. Particularly, RDF PET100 emerges as a high-caliber fuel option characterized by its minimal water and ash content, coupled with a substantial calorific value. This innovation holds promise in mitigating plastic waste challenges, particularly pertinent in the context of Indonesia.
Słowa kluczowe
Wydawca

Rocznik
Strony
133--142
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, Jakarta, Jakarta Selatan, Indonesia, mega.ms@universitaspertamina.ac.id
  • Department of Architecture and Civil Engineering, Toyohashi University of Technology, Japan
  • Faculty of Vocational Studies, Indonesia Defense University, Indonesia
  • Study Program of Civil Engineering, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir Sutami 36A Surakarta, Jawa Tengah 57126, Indonesia
  • Department of Architecture and Civil Engineering, Toyohashi University of Technology, Japan
  • Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
  • Department of Architecture and Civil Engineering, Toyohashi University of Technology, Japan
  • Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, Jakarta, Jakarta Selatan, Indonesia
  • Environmental Sciences Study Program, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Surakarta, 57126, Indonesia
  • Department of Environmental Engineering, Faculty of Infrastructure Planning, Universitas Pertamina, Komplek Universitas Pertamina, Jakarta, Jakarta Selatan, Indonesia
  • Universitas Negeri Medan, Medan, Indonesia
  • Department of Environmental Engineering, Faculty of Civil and Environmental Engineering, Institut Teknologi Bandung, Jl. Ganesha no. 10, Bandung 40132, Indonesia
Bibliografia
  • 1. Al-Mansour F., Zuwala J. (2010) An evaluation of biomass co-firing in Europe. Biomass and Bioenergy 34: 620–629. https://doi.org/https://doi.org/10.1016/j.biombioe.2010.01.004
  • 2. Gałko G., Mazur I, Rejdak M., et al (2023) Evaluation of alternative refuse-derived fuel use as a valuable resource in various valorised applications. Energy 263: 125920. https://doi.org/https://doi.org/10.1016/j.energy.2022.125920
  • 3. Harussani M.M., Sapuan S.M., Rashid U., et al (2022) Pyrolysis of polypropylene plastic waste into carbonaceous char: Priority of plastic waste management amidst COVID-19 pandemic. Sci Total Environ 803: 149911. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.149911
  • 4. Haryono H. (2020) Uji Kualitas Briket dari Tongkol Jagung dengan Perekat Kanji/PET dan Komposisi Gas Buang Pembakarannya. J Ilmu dan Inov Fis 4: 131–139. https://doi.org/10.24198/jiif.v4i2.28606
  • 5. Heberlein S., Chan W.P., Veksha A., et al (2022) High temperature slagging gasification of municipal solid waste with biomass charcoal as a greener auxiliary fuel. J Hazard Mater 423: 127057. https://doi.org/https://doi.org/10.1016/j.jhazmat.2021.127057
  • 6. Maafa I.M. (2021) Pyrolysis of Polystyrene Waste: A Review. Polymers (Basel). 13.
  • 7. Machmud M. (2017) Solid Waste Management in Jakarta and Surabaya BT – Observing Policy-Making in Indonesia. In: Friedberg E, Hilderbrand ME (eds). Springer Singapore, Singapore, pp. 187–221.
  • 8. Nurhati I.S., Cordova M.R. (2020) Marine plastic debris in Indonesia: Baseline estimates (2010–2019) and monitoring strategies (2021–2025). Mar Res Indones 45: 97–102. https://doi.org/10.14203/mri.v45i2.581
  • 9. Rachman S.A., Hamdi M., Djaenuri A., Sartika I. (2020) Model of Public Policy Implementation for Refused Derived Fuel (RDF) Waste Management in Cilacap Regency. Int J Sci Soc 2. https://doi.org/10.200609/ijsoc.v2i4.239
  • 10. Sapuay G.P. (2016) Resource Recovery through RDF: Current Trends in Solid Waste Management in the Philippines. Procedia Environ Sci 35: 464–473. https://doi.org/https://doi.org/10.1016/j.proenv.2016.07.030
  • 11. Sari D.A.A., Suryanto, Sudarwanto A.S., et al (2021) Reduce marine debris policy in Indonesia. IOP Conf Ser Earth Environ Sci 724: 12118. https://doi.org/10.1088/1755–1315/724/1/012118
  • 12. Sari M.M., Inoue T., Harryes R.K., et al (2022a) Potential of Recycle Marine Debris in Pluit Emplacement , Jakarta to Achieve Sustainable Reduction of Marine Waste Generation. Int J Sustain Dev Plan 17: 119–125.
  • 13. Sari M.M., Inoue T., Septiariva I.Y., et al (2022b) Identification of Face Mask Waste Generation and Processing in Tourist Areas with Thermo-Chemical Process. Arch Environ Prot 48: 79–85.
  • 14. Sarwono A., Septiariva I.Y., Qonitan F.D., et al (2021) Refuse Derived Fuel for Energy Recovery by Thermal Processes. A Case Study in Depok City, Indonesia. J Adv Res Fluid Mech Therm Sci 88: 12–23.
  • 15. Septiariva I.Y., Suryawan I.W.K., Zahra N.L., et al (2022) Characterization Sludge from Drying Area and Sludge Drying Bed in Sludge Treatment Plant Surabaya City for Waste to Energy Approach. J Ecol Eng 23: 268–275.
  • 16. Shafie S.M., Mahlia T.M.I., Masjuki H.H. (2013) Life cycle assessment of rice straw co-firing with coal power generation in Malaysia. Energy 57: 284–294. https://doi.org/https://doi.org/10.1016/j.energy.2013.06.002
  • 17. Singh R.K., Ruj B. (2016) Time and temperature depended fuel gas generation from pyrolysis of real world municipal plastic waste. Fuel 174: 164–171. https://doi.org/https://doi.org/10.1016/j.fuel.2016.01.049
  • 18. Suryawan I.W.K., Lee C-H. (2023) Citizens’ willingness to pay for adaptive municipal solid waste management services in Jakarta, Indonesia.Sustain Cities Soc 97. https://doi.org/https://doi.org/10.1016/j.scs.2023.104765
  • 19. Suryawan I.W.K., Septiariva IY, Fauziah EN, et al (2022) Municipal solid waste to energy : palletization of paper and garden waste into refuse derived fuel. J Ecol Eng 23: 64–74.
  • 20. Suryawan I.W.K., Septiariva I.Y., Sari M.M., et al (2023) Acceptance of Waste to Energy (WtE) Technology by Local Residents of Jakarta City, Indonesia to Achieve Sustainable Clean and Environmentally Friendly Energy. J Sustain Dev Energy, Water Environ Syst 11: 1004.
  • 21. Vamvuka D. (2011) Bio-oil, solid and gaseous biofuels from biomass pyrolysis processes–An overview. Int J Energy Res 35:835–862. https://doi.org/https://doi.org/10.1002/er.1804
  • 22. Zahra N.L., Septiariva I.Y., Sarwono A., et al (2022) Substitution Garden and Polyethylene Terephthalate (PET) Plastic Waste as Refused Derived Fuel (RDF). Int J Renew Energy Dev 11: 523–532. https://doi.org/10.14710/ijred.2022.44328
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-93e2587a-12b8-40b6-93a4-58f6c653d1a4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.