Warianty tytułu
Języki publikacji
Abstrakty
For a one-dimensional discrete time system S on the closed unit interval I we introduce an operator QS, which transforms a distribution function G into a distribution function QSG under the backward operation of S. We study the operator QS for piecewise linear transformations S and give conditions under which the iterations G0, QSG0, QS(QSG0), … of the distribution function G0 converge to a QS-invariant distribution function G, which conjugates S and the corresponding piecewise linear transformation T of constant slope.
Czasopismo
Rocznik
Tom
Strony
197--211
Opis fizyczny
Bibliogr. 9 poz.
Twórcy
autor
- Department of Mathematics, University of Innsbruck, 6020 Innsbruck, Austria, christof.koph@uibk.ac.at
Bibliografia
- [1] L. Alseda, J. Llibre and M. Misiurewicz, Combinatorial Dynamics and Entropy in Dimension One, World Scientific, Singapore, 1993.
- [2] A. Boyarsky and P. Góra, Laws of Chaos, Invariant Measures and Dynamical Systems in One Dimension, Birkhauser, Boston, 1997.
- [3] C. Kopf, Invariant measures for piecewise linear transformations of the interval, Appl. Math. Comput. 39 (1990), 123-144.
- [4] C. Kopf, Symbol sequences and invariant measures for piecewise linear transformations of the interval, Grazer Math. Ber. 334 (1997), 173-191.
- [5] A. Lasota and M. C. Mackey, Chaos, Fractals and Noise, Stochastic Aspects of Dynamics, 2nd ed., Springer, New York, 1994.
- [6] W. de Melo and S. van Strien, One-Dimensional Dynamics, Springer, New York, 2012.
- [7] W. Parry, Symbolic dynamics and transformations of the unit interval, Trans. Amer. Math. Soc. 122 (1966), 368-378.
- [8] S. M. Ulam, Problems in Modern Mathematics, Wiley, New York, 1964.
- [9] S. M. Ulam and J. von Neumann, On combination of stochastic and deterministic processes, Bull. Amer. Math. Soc. 53 (1947), 1120.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-939ef4af-8c25-4a2b-b681-cec132ec415f