Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 28, nr 3 | 429--447
Tytuł artykułu

Modelling of expansion changes of Vilnius city area and impacts on landscape patterns using an artificial neural network

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study aimed to analyse changes in the land cover of Vilnius city and its surrounding areas and propose a scenario for their future changes using an Artificial Neural Network. The land cover dynamics modelling was based on a multilayer perceptron neural network. Landscape metrics at a class and landscape level were evaluated to determine the amount of changes in the land uses. As the results showed, the Built-up area class increased, while the forest (Semi forest and Dense forest) classes decreased during the period from 1999 to 2019. The predicted scenario showed a considerable increase of about 60 % in the Built-up area until 2039. The vegetation plant areas consist about 47 % of all the area in 2019, but it will be 36 % in 2039, if this trend (urban expansion) continues in the further. The findings further indicated the major urban expansion in the vegetation areas. However, Built-up area would expand over Semi forest land and Dense forest land, with a large part of them changed into built- up areas.
Wydawca

Rocznik
Strony
429--447
Opis fizyczny
Bibliogr. 59 poz., il., tab., wykr.
Twórcy
  • Department of Geodesy and Cadastre, Vilnius Gediminas Technical University, Sauletekio al. 11, LT-10223 Vilnius, Lithuania, jurate.visockiene@vgtu.lt
  • Group of Environmental Assessment and Risks, Researcher Center for Environmental and Sustainable Development (RCESD), Tehran, Iran, azarandian@gmail.com
Bibliografia
  • [1] United Nations, Department of Economic and Social Affairs, Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420). New York: United Nations; 2019. Available from: https://population.un.org/wup/Publications/Files/WUP2018-Report.pdf.
  • [2] Kyakuno T. Prediction of land use changes with Bayesian spatial modeling from the perspective of urban climate. Urban Climate. 2020;31:100569. DOI: 10.1016/j.uclim.2019.100569.
  • [3] Homer C, Dewitz J, Jin S, Xian G, Costello C, Danielson P, et al. Conterminous United States land cover change patterns 2001-2016 from the 2016 National Land Cover Database. ISPRS J Photogrammetry Remote Sensing. 2020;162:184-99. DOI: 10.1016/j.isprsjprs.2020.02.019.
  • [4] Islam K, Rahman F, Jashimuddin M. Modeling land use change using Cellular Automata and Artificial Neural Network: The case of Chunati Wildlife Sanctuary, Bangladesh. Ecol Indicators. 2018;88:439-53. DOI: 10.1016/j.ecolind.2018.01.047.
  • [5] He Y, Zhang D, Huang X, Zhao Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ Modelling Software. 2016;75:44-58. DOI: 10.1016/j.envsoft.2015.09.015.
  • [6] Yu W, Zhang Y, Zhou W, Wang W, Tang R. Urban expansion in Shenzhen since 1970s: A retrospect of change from a village to a megacity from the space. Phys Chem Earth. 2019;110:21-30. DOI: 10.1016/j.pce.2019.02.006.
  • [7] Wang Ch, Wang Y, Wang R, Zheng P. Modeling and evaluating land-use/land-cover change for urban planning and sustainability: A case study of Dongying city, China. J Cleaner Prod. 2018;172:1529-34. DOI: 10.1016/j.jclepro.2017.10.294.
  • [8] Zhou W, Zhang S, Yu W, Wang J, Wang W. Effects of urban expansion on forest loss and fragmentation in six megaregions, China. Remot Sens. 2017;9:991. DOI: 10.3390/rs9100991.
  • [9] Salvati L, Lamonica G. Containing urban expansion: Densification vs greenfield development, sociodemographic transformations and the economic crisis in a Southern European City, 2006-2015. Ecol Indicators. 2020;110,105923. DOI: 10.1016/j.ecolind.2019.105923.
  • [10] Chen Sh, Feng Y, Tong X, Liu S, Xie H, Gao Ch, et al. Modeling ESV losses caused by urban expansion using cellular automata and geographically weighted regression. Sci Total Environ. 2020;712,136509. DOI: 10.1016/j.scitotenv.2020.136509.
  • [11] Zhou L, Dang X, Sun Q, Wang Sh. Multi-scenario simulation of urban land change in Shanghai by random forest and CA-Markov model. Sust Cities Society. 2020;55:102045. DOI: 10.1016/j.scs.2020.102045.
  • [12] Karimi Firozjaei M, Sedighi A, Argany M, Jelokhani-Niaraki M, Jokar Arsanjani J. A geographical direction-based approach for capturing the local variation of urban expansion in the application of CA-Markov model. Cities. 2019;93:120-35. DOI: 10.1016/j.cities.2019.05.001.
  • [13] Mirbagheri B, Alimohammadi A. Improving urban cellular automata performance by integrating global and geographically weighted logistic regression models. Trans GIS. 2017;21:6. DOI: 10.1111/tgis.12278.
  • [14] Zhong S, Qian Y, Chandan Z, Chun L, Ruby W, Hailong Y, et al. Urbanization effect on winter haze in the Yangtze River Delta region of China. Geophys Res Lett. 2018;13:6710-8. DOI: 10.1029/2018GL077239.
  • [15] Son N, Chen C, Chen C. Urban expansion and its impacts on local temperature in San Salvador, El Salvador. Urban Climate. 2020;32,100617. DOI: 10.1016/j.uclim.2020.100617.
  • [16] Luo K, Hu X, He Q, Wu Z, Cheng H, Hu Z, et al. Impacts of rapid urbanization on the water quality and macroinvertebrate communities of streams: A case study in Liangjiang New Area, China. Sci Total Environ. 2018;621:1601-14. DOI: 10.1016/j.scitotenv.2017.10.068.
  • [17] Xie H, Zhang Y, Duan K. Evolutionary overview of urban expansion based on bibliometric analysis in Web of Science from 1990 to 2019. Habitat Int. 2020;95:102100. DOI: 10.1016/j.habitatint.2019.102100.
  • [18] Huang Z, Wei Y, He C, Li H. Urban land expansion under economic transition in China: A multi-level modeling analysis. Habitat Int. 2015;47:69-82. DOI: 10.1016/j.habitatint.2015.01.007.
  • [19] Mohammad A, Worku H. Simulating urban land use and cover dynamics using cellular automata and Markov chain approach in Addis Ababa and the surrounding. Urban Climate. 2020;31:100545. DOI: 10.1016/j.uclim.2019.100545.
  • [20] Romano G, Abdelwahab O, Gentile F. Modeling land use changes and their impact on sediment load in a Mediterranean watershed. Catena. 2018;163:342-53. DOI: 10.1016/j.catena.2017.12.039.
  • [21] Xu T, Gao J. Directional multi-scale analysis and simulation of urban expansion in Auckland, New Zealand using logistic cellular automata. Computers, Environ Urban Systems. 2019;78:101390. DOI: 10.1016/j.compenvurbsys.2019.101390.
  • [22] Zhang J, Hao Y, Hu B, Huo X, Hao P, Liu Z. The effects of monsoons and climate teleconnections on the Niangziguan Karst Spring discharge in North China. Clim Dynam. 2017;48:53-70. DOI: 10.1007/s00382-016-3062-2.
  • [23] Huilei L, Jian P, Yanxu L, Yina H. Urbanization impact on landscape patterns in Beijing City, China: A spatial heterogeneity perspective, Ecol Indicators. 2017;82:50-60. DOI: 10.1016/j.ecolind.2017.06.032.
  • [24] Nong D, Lepczyk C, Miura T, Fox J. Quantifying urban growth patterns in Hanoi using landscape expansion modes and time series spatial metrics. PLoS ONE. 2018;13(5):e0196940. DOI: 10.1371/journal.pone.0196940.
  • [25] Sun X, Crittenden J, Li F, Lu Z, Dou X. Urban expansion simulation and the spatio-temporal changes of ecosystem services, a case study in Atlanta Metropolitan area, USA. Sci Total Environ. 2018;622-623;974-87. DOI: 10.1016/j.scitotenv.2017.12.062.
  • [26] Armenteras D, Murcia U, Gonzalez T, Baron O, Arias J. Scenarios of land use and land cover change for NW Amazonia: Impact on forest intactness. Global Ecol Conserv. 2019;17:e00567. DOI: 10.1016/j.gecco.2019.e00567.
  • [27] Tong L, Hu Sh, Frazier A. Hierarchically measuring urban expansion in fast urbanizing regions using multidimensional metrics: A case of Wuhan metropolis, China. Habitat Int. 2019;94:102070. DOI: 10.1016/j.habitatint.2019.102070.
  • [28] Yang Y, Zhang D, Nan Y, Liu Zh, Zheng W. Modeling urban expansion in the transnational area of Changbai Mountain: A scenario analysis based on the zoned land use scenario dynamics-urban model. Sust Cities Soc. 2019;50:101622. DOI: 10.1016/j.scs.2019.101622.
  • [29] Dadashpoor H, Salarian F. Urban sprawl on natural lands: Analyzing and predicting the trend of land use changes and sprawl in Mazandaran city region, Iran. Environ Development Sust. 2018;22:593-614. DOI: 10.1007/s10668-018-0211-2.
  • [30] Bonilla-Bedoya S, Mora A, Vaca A, Estrella A, Ángel Herrera M. Modelling the relationship between urban expansion processes and urban forest characteristics: An application to the Metropolitan District of Quito. Computers, Environ Urban Systems. 2020;79:101420. DOI: 10.1016/j.compenvurbsys.2019.101420.
  • [31] Yang J, LI Sh, Xu J, Wang X, Zhang X. Effects of changing scales on landscape patterns and spatial modeling under urbanization. J Environ Eng Landscape Manage. 2020;28(2): 62-73. DOI: 10.3846/jeelm.2020.12081.
  • [32] Basse RM, Omrani H, Charif O, Gerber P, Bodis K. Land use changes modelling using advanced methods: Cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Appl Geography. 2014;53:160-71. DOI: 10.1016/j.apgeog.2014.06.016.
  • [33] Ansari A, Golabi M. Prediction of spatial land use changes based on LCM in a GIS environment for Desert Wetlands - A case study: Meighan Wetland, Iran. Int Soil Water Conserv Res. 2019;7,64-70. DOI: 10.1016/j.iswcr.2018.10.001.
  • [34] Silva L, Xavier A, Silva R, Santos G. Modeling land cover change based on an artificial neural network for a semiarid river basin in northeastern Brazil. Global Ecol Conserv. 2020;21:e008112019. DOI: 10.1016/j.gecco.2019-00811.
  • [35] Isik S, Kalin L, Schoonover J, Srivastava P, Lockaby G. Modeling effects of changing land use/cover on daily streamflow: An Artificial Neural Network and curve number based hybrid approach. J Hydrol. 2013;485:103-12. DOI: 10.1016/j.jhydrol.2012.08.032.
  • [36] Taraškevičius R, Motiejūnaitė G, Zinkutė R, Eigminienė A, Gedminienė L, Stankevičius Z. Similarities and differences in geochemical distribution patterns in epiphytic lichens and topsoils from kindergarten grounds in Vilnius. J Geochem Explor. 2017;183:152-65. DOI: 10.1016/j.gexplo.2017.08.013.
  • [37] Geological Survey. Geological Survey Download GLOVIS. Available from: https://glovis.usgs.gov, Accessed 29th Dec 2019.
  • [38] Mancino G, Ferrara A, Padula A, Nolè A. Cross-Comparison between Landsat 8 (OLI) and Landsat 7 (ETM+) Derived Vegetation Indices in a Mediterranean Environment. Remote Sensing. 2020;12:291. DOI: 10.3390/rs12020291.
  • [39] Samardžic-Petrovic M, Kova¡cevic M, Bajat B, Dragi'cevic S. Machine learning techniques for modelling short term land-use change. ISPRS Int J Geology-Information. 2017;6:387. DOI: 10.3390/ijgi6120387.
  • [40] Heydari S, Mountrakis G. Meta-analysis of deep neural networks in remote sensing: A comparative study of mono-temporal classification to support vector machines. ISPRS J Photogrammetry Remote Sensing. 2019;152:192-210. DOI: 10.1016/j.isprsjprs.2019.04.016.
  • [41] Karimi F, Sultana S, Shirzadi Babakan A, Suthaharan Sh. An enhanced support vector machine model for urban expansion prediction. Computers, Environ Urban Systems. 2019;75:61-75. DOI: 10.1016/j.compenvurbsys.2019.01.001.
  • [42] Santana EF, Vidal Batista L, Silva RM, Santos CA. Multispectral image unsupervised segmentation using watershed transformation and cross-entropy minimization in different land use. GIScience Remote Sensing. 2014;51(6):613-29. DOI: 10.1080/15481603.2014.980095.
  • [43] Roohi R, Jafari M, Jahantab E, Saffari Aman M, Moameri M, Zare S. Application of artificial neural network model for the identification the effect of municipal waste compost and biochar on phytoremediation of contaminated soils. J Geochem Exploration. 2020;208:106399. DOI: 10.1016/j.gexplo.2019.106399.
  • [44] Ray A, Halder T, Jena S, Sahoo A, Ghosh B, Mohanty S, et al. Application of artificial neural network (ANN) model for prediction and optimization of coronarin D content in Hedychium coronarium. Industrial Crops Products. 2020;146:112186. DOI: 10.1016/j.indcrop.2020.112186.
  • [45] Liu X, Zhu X, Zhang Q, Yang T, Pan Y, Sun P. A remote sensing and artificial neural network-based integrated agricultural drought index: Index development and applications. Catena. 2020;186:104394. DOI: 10.1016/j.catena.2019.104394.
  • [46] Thangavel R, Kanchikerimath M, Sudharsanam A, Ayyanadar A, Karunanithi R, Deshmukh N, et al. Evaluating organic carbon fractions, temperature sensitivity and artificial neural network modeling of CO2 efflux in soils: Impact of land use change in subtropical India (Meghalaya). Ecol Indicators. 2020;93:129-41. DOI: 10.1016/j.ecolind.2018.04.077.
  • [47] Nasiri V, Darvishsefat A, Rafiee R, Shirvany A, Hemat M. Land use change modeling through an integrated Multi-Layer Perceptron Neural Network and Markov Chain analysis (case study: Arasbaran region, Iran). J Forestry Res. 2018;30(3):943-57. DOI: 10.1007/s11676-018-0659-9.
  • [48] Shooshtarian M, Dehghani M, Margherita F, Gea O, Mortezazadeh Sh. Land use change and conversion effects on ground water quality trends: An integration of land change modeler in GIS and a new Ground Water Quality Index developed by fuzzy multi-criteria group decision-making models. Food Chem Toxicol. 2019;114:204-14. DOI: 10.1016/j.fct.2018.02.025.
  • [49] Hamdy O, Zhao S, Salheen M, Eid Y. Analyses the driving forces for urban growth by using IDRISI Selva Models Abouelreesh - Aswan as a case study. Int J Eng Technol. 2017;9(3):226-32. DOI: 10.7763/IJET.2017.V9.975.
  • [50] Zarandian A, Baral H, Stork N, Ling M, Yavari A, Jafari H, et al. Modeling of ecosystem services informs spatial planning in landsadjacent to the Sarvelat and Javaherdasht protected area in northern Iran. Land Use Policy. 2017;61:487-500. DOI: 10.1016/j.landusepol.2016.12.003.
  • [51] Su S, Xiao R, Jiang Z, Zhang Y. Characterizing landscape pattern and ecosystem service value changes for urbanization impacts at an eco-regional scale. Appl Geogr. 2012;34:295-305. DOI: 10.1016/j.apgeog.2011.12.001.
  • [52] You H. Agricultural landscape dynamics in response to economic transition: comparisons between different spatial planning zones in Ningbo region, China. Land Use Policy. 2017;61:316-28. DOI: 10.1016/j.landusepol.2016.11.025.
  • [53] Wu K, Ye X, Qi Z, Zhang H. Impacts of land use/land cover change and socioeconomic development on regional ecosystem services: the case of fast-growing Hangzhou metropolitan area, China. Cities. 2013;31:276-84. DOI: 10.1016/j.cities.2012.08.003.
  • [54] Long H, Liu Y, Hou X, Li T, Li Y. Effects of land use transitions due to rapid urbanization on ecosystem services: implications for urban planning in the new developing area of China. Habitat Int. 2014;44:536-44. DOI: 10.1016/j.habitatint.2014.10.011.
  • [55] Tripathi R, Moharana K, Nayak A, Dhal B, Shahid M, Mondal B, et al. Ecosystem services in different agro-climatic zones in eastern India: impact of land use and land cover change. Environ Monit Assess. 2019;191(2):98. DOI: 10.1007/s10661-019-7224-7.
  • [56] Almeida D, Rocha J, Neto C, Arsénio P. Landscape metrics applied to formerly reclaimed saltmarshes: A tool to evaluate ecosystem services? Estuarine, Coastal Shelf Sci. 2016;181:100-13. DOI: 10.1016/j.ecss.2016.08.020.
  • [57] Hassan MM. Monitoring land use/ land cover change, urban growth dynamics and landscape pattern analysis in five fastest urbanized cities in Bangladesh. Remote Sensing Applications: Society Environ. 2017;7:69-83. DOI: 10.1016/j.rsase.2017.07.001.
  • [58] Forman R. Urban Ecology: Science of Cities. Cambridge University Press; 2014. ISBN: 9780521188241 DOI: 10.5860/choice.190738.
  • [59] McGarigal K. Fragstats Help. Amherst: University of Massachusetts. USA; 2015. ISBN: 6450061768432. DOI: umass.edu/landeco/research/fragstats/fragstats.html.
Uwagi
1. This research [paper] was performed as part of the employment of the authors at Vilnius Gediminas Technical University as employees and PhD student.
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-939ab4fe-ab0e-4976-9033-457146d527e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.