Warianty tytułu
Języki publikacji
Abstrakty
Chemical, petroleum and nuclear systems are only a few of the industrial processes that utilize gas-liquid flow in annular closed channels. However, concentric horizontal annuli flow patterns have received little attention. The ability to precisely characterize two-phase flow patterns using computational techniques is crucial for the production, transportation, and optimization of designs. This current research aims to establish the accuracy of the computational fluid dynamics (CFD) model in predicting the gas-liquid flow pattern in the concentric annulus pipe and validating the flow pattern of liquid holdup with experimental results from the literature. The simulations were done on a test section of a 12.8 m length pipe with a hydraulic diameter of 0.0168 m using air and water as the working fluids. The volume of fluid (VOF) model in Ansys Fluent based on the Eulerian- Eulerian approach in conjunction with the realizable k-ε turbulence model was used to model the gas-liquid flow pattern, i.e. dispersed bubble, elongated bubble, and slug in a horizontal annulus. A comparison of the model with the experimental high-speed video images shows a reasonable agreement for the flow pattern and liquid holdup data.
Czasopismo
Rocznik
Tom
Strony
705--731
Opis fizyczny
Bibliogr. 60 poz., rys.
Twórcy
autor
- Thermo-fluid, Combustion and Energy System Research Group, Department of Mechanical Engineering, University of Cross River State, PMB 1123, Calabar, Nigeria, nyong.oku@uncross.edu.ng
autor
- Department of Mechanical Engineering, University of Port Harcourt, PMB 5323 Choba, Rivers State, Nigeria
autor
- Energy and Thermofluid Research Group, Department of Mechanical Engineering, Faculty of Engineering, University of Port Harcourt, PMB 5323 Choba, Rivers State, Nigeria
autor
- Thermo-fluid, Combustion and Energy System Research Group, Department of Mechanical Engineering, University of Cross River State, PMB 1123, Calabar, Nigeria
autor
- Department of Mechanical Engineering, Ekiti State University, PMB. 5363 Ado-Ekiti, Ekiti State, Nigeria
autor
- Department of Mechanical Engineering, University of Birmingham, Academic City – Dubai – United Arab Emirates, UK
Bibliografia
- [1] Crawford N.M., Cunningham G., Spence S.W.T.: An experimental investigation into the pressure drop for turbulent flow in 90 elbow bends. Proc. Inst. Mech. Engrs. E: J. Process Mech. Eng. 221(2007), 77–88. doi: 10.1243/0954408JPME84
- [2] Abdulkadir M.: Experimental and computational fluid dynamics (CFD) studies of gas-liquid flow in bends. PhD thesis, Univ. Nottingham, 2011.
- [3] Sarica C., Pereyra E.J.: Brito R.: Effect of medium oil viscosity on two phase oil gas flow behavior in horizontal pipes. In: Proc. Offshore Technology Conf., Houston, May 2013. doi: 10.4043/24048-MS
- [4] Tzotzi C., Bontozoglou V., Andritsos N., Vlachogiannis M.: Effect of fluid properties on flow patterns in two-phase gas – liquid flow in horizontal and downward pipes. Ind. Eng. Chem. Res. 50(2011), 2, 645–55. doi: 10.1021/ie100239v
- [5] Matsubara H., Naito K.: Effect of liquid viscosity on flow patterns of gas-liquid twophase flow in a horizontal pipe. Int. J. Multiphas. Flow 37(2011), 10, 1277–1281. doi: 10.1016/j.ijmultiphaseflow.2011.08.001
- [6] Waelchli S, von Roh P.R.: Two-phase flow characteristics in gas–liquid microreactors. Int. J. Multiphas. Flow 32(2006), 7, 791–806. doi: 10.1016/j.ijmultiphaseflow.2006.02.014
- [7] Ekberg N.P., Ghiaasiaan S.M., Abdel-Khalik S.I., Yoda M., Jeter S.M.: Gas–liquid two-phase flow in narrow horizontal annuli. Nucl. Eng. Des. 192(1999), 1, 59–80.doi: 10.1016/S0029-5493(99)00078-3
- [8] Eyo E.N., Lao L.: Gas-liquid flow regimes in horizontal annulus. J. Petrol. Sci. Eng.175(2019), 573–586. doi: 10.1016/j.petrol.2018.12.056
- [9] Barnea D., Luninski Y., Taitel Y.: Flow pattern in horizontal and vertical two phase flow in small diameter pipes. Canadian J. Chem. Eng. 61(1983), 617–20.
- [10] Izwan Ismail A.S., Ismail I., Zoveidavianpoor M., Mohsin R., Piroozian A., Misnan M.S., et al.: Experimental investigation of oil–water two-phase flow in horizontal pipes: Pressure losses, liquid holdup and flow patterns. J. Petrol. Sci. Eng. 127(2015),409–420.
- [11] Mandhane J.M., Gregory G.A., Aziz K.: A flow pattern map for gas – liquid flow in horizontal pipes. Int. J. Multiphas. Flow 1(1974), 537–553.
- [12] Farman Ali S., Yeung H.: Experimental study of two-phase air–water flow in largediameter vertical pipes. Chem. Eng. Commun. 202(2015), 823–842.
- [13] Kiran R., Ahmed R., Salehi S.: Experiments and cfd modelling for two phase flow in a vertical annulus. Chem. Eng. Res. Des. 153(2020), 201–211.
- [14] Jagan V., Satheesh A.: Experimental studies on two phase flow patterns of air–water mixture in a pipe with different orientations. Flow Meas. Instrum. 52(2016),170–179.
- [15] Barnea D., Shoham O., Taitel Y., Dukler A.E.: Flow pattern transition for gas-liquid flow in horizontal and inclined pipes. Comparison of experimental data with theory. Int. J. Multiphas. Flow 6(1980), 217–225.
- [16] Rodriguez O.M.H., Baldani L.S.: Prediction of pressure gradient and holdup in wavy stratified liquid–liquid inclined pipe flow. J. Petrol. Sci. Eng. 96-97(2012), 140–151.
- [17] Nyong O., Fakorede D., Ifere M., Bepaye A., Igbong D., Ebieto C., et al.: CFD modelling of dispersed bubble two-phase flow in a concentric annulus pipe. Int. Res, J. Innovat. Eng, 5(2021), 82.
- [18] Ibarra R., Nossen J., Tutkun M.: Two-phase gas-liquid flow in concentric and fully eccentric annuli. Part I: Flow patterns, holdup, slip ratio and pressure gradient. Chem. Eng. Sci. 203(2019), 489–500.
- [19] Lage A.C., Rommetveit R., Time R.W.: An experimental and theoretical study of two-phase flow in horizontal or slightly deviated fully eccentric annuli. In: Proc. IADC/SPE Asia Pacific Drilling Technology, OnePetro; 2000.
- [20] Adapco C. Star-CCM+ Theory Guide. CD-adapco. 2021.
- [21] Friedemann C., Mortensen M., Nossen J.: Two-phase flow simulations at 0–4◦ inclination in an eccentric annulus. Int. J. Heat Fluid Fl. 83(2020), 108586.
- [22] Sultan R.A., Rahman M.A., Rushd S., Zendehboudi S., Kelessidis V.C.J.: CFD analysis of pressure losses and deposition velocities in horizontal annuli. Int. J. Chem. Eng. (2019), 7068989.
- [23] Fluent A. Ansys Fluent theory guide. Ansys Inc, USA. 2011; 15317:724-46.
- [24] Hamza G., Benderradji R., Beghidja A., Tayebi T.: Numerical study of upward vertical two-phase flow through an annulus concentric pipe. J. Adv. Res. Fluid Mech. Therm. Sci. 58(2020), 187–206.
- [25] Sergeev V., Vatin N., Kotov E., Nemova D., Khorobrov S.J.: Slug regime transitions in a two-phase flow in horizontal round pipe. CFD Simulations 10(2020), 8739.
- [26] Gioia F., Hewitt G.F., Alimonti C.: Multiphase Flow Metering: Principles and Applications. Multiphase Flow Metering: Principles and Applications. Elsevier Sci., 2009.
- [27] Xue Y., Stewart C., Kelly D., Campbell D., Gormley M.J.W.: Two-phase annular flow in vertical pipes: A critical review of current research techniques and progress. Water 14(2022), 3496.
- [28] Lin R., Wang K., Liu L., Zhang Y., Dong S.: Study on the characteristics of interfacial waves in annular flow by image analysis. Chem. Eng. Sci. 212(2020), 115336.
- [29] van Eckeveld A.C., Gotfredsen E., Westerweel J., Poelma C.: Annular two-phase flow in vertical smooth and corrugated pipes. Int. J. Multiphase Flow 109(2018),150–163.
- [30] Häber T., Gebretsadik M., Bockhorn H., Zarzalis N.: The effect of total reflection in plif imaging of annular thin films. Int. J. Multiphase Flow 76(2015), 64–72.
- [31] Banowski M., Beyer M., Szalinski L., Lucas D., Hampel U.: Comparative study of ultrafast X-ray tomography and wire-mesh sensors for vertical gas–liquid pipe flows. Flow Meas. Instrum. 53(2017), 95–106.
- [32] Hanus R., Zych M., Mosorov V., Golijanek-Jędrzejczyk A., Jaszczur M., Andruszkiewicz A.J.M., et al.: Evaluation of liquid-gas flow in pipeline using gamma-ray absorption technique and advanced signal processing. Metr. Meas. Syst. 28(2021),145–159.
- [33] Sorgun M., Osgouei R.E., Ozbayoglu M.E., Ozbayoglu A.M.: An experimental and numerical study of two-phase flow in horizontal eccentric annuli. Energy Sources, Part A: Recovery. Util. Environ. Eff. 35(2013), 891–899.
- [34] Osgouei R.E., Ozbayoglu E.M., Ozbayoglu M.A., Yuksel E.: Flow pattern identification of gas-liquid flow through horizontal annular geometries. In: Proc. SPE Oil and Gas India Conf. Exhibit. 2010.
- [35] Abbasi M., Baniamerian Z.: Analytical simulation of flow and heat transfer of twophase nanofluid (stratified flow regime). Int. J. Chem. Eng. (2014), 474865.
- [36] Ozbayoglu M.E., Omurlu C.: Modelling of two-phase flow through concentric annuli. J. Petrol. Sci. Technol. 25(2007), 1027–1040.
- [37] Omurlu C., Ozbayoglu E.M.: A new mechanistic model for two-phase flow through eccentric horizontal annulus. In: Proc. SPE Europec/EAGE Ann. Conf. Exhib. 2006.
- [38] Lahiri S., Ghanta K.: Computational technique to predict the velocity and concentration profile for solid-liquid slurry flow in pipelines. In: Proc. 17th Int. Conf. on Hydrotransport, Capetown 2007, 149–175.
- [39] Vijiapurapu S., Cui J.: Performance of turbulence models for flows through rough pipes. Appl. Math. Model. 34(2010), 1458–1466.
- [40] Markatos N.C.: The mathematical modelling of turbulent flows. Appl. Math. Model.10(1986), 190–220.
- [41] Kelessidis V.C., Dalamarinis P., Maglione R.: Experimental study and predictions of pressure losses of fluids modeled as Herschel–Bulkley in concentric and eccentric annuli in laminar, transitional and turbulent flows. J. Petrol. Sci. Eng. 77(2011),305–312.
- [42] Sultan R.A.: A comprehensive study on multiphase flow through pipeline and annuli using cfd approach. Memorial University of Newfoundland; 2018.
- [43] Laufer J.: The structure of turbulence in fully developed pipe flow. NASA, Natl. Bureau Stand., 1953.
- [44] Lien K., Monty J., Chong M., Ooi A.: The entrance length for fully developed turbulent channel flow. In: Proc. 15th Australian Fluid Mechanics Conf., Univ. of Sydney, Sydney, 2004, 356–363.
- [45] Friedemann C., Mortensen M., Nossen J.: Gas-liquid slug flow in a horizontal concentric annulus, a comparison of numerical simulations and experimental data. Int. J. Heat Fluid Fl. 78(2019), 108437.
- [46] Brackbill J.U., Kothe D.B., Zemach C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(1992), 335–354.
- [47] Anderson T.B., Jackson R.: Fluid mechanical description of fluidized beds. Equations of motion. Ind. Eng. Chem. Fund. 6(1967), 527–539.
- [48] Atkin R.J., Craine R.E.: Continuum theories of mixtures: Applications. IMA J. Appl. Math. 17(1976), 153–207.
- [49] Bowen R.: Continuum physics Vol. 4. 1976.
- [50] Dakshinamoorthy D., Dai Y., Agrawal M.: CFD modeling of bubbly, slugand annular flow regimes in vertical pipelines. In: Proc. Offshore Technology Conf., Houston,2013, 6–9.
- [51] Manual U.J.T.G. Ansys Fluent 12.0. 2009.
- [52] Launder B.E., Spalding D.B.: The numerical computation of turbulent flows. In: Numerical Prediction of Flow, Heat Transfer, Turbulence and Combustion (S.V. Patankar, A. Pollard, A.K. Singhal, S.P. Vanka, Eds.), Pergamon, 1983, 96–116.
- [53] Fathi Roudsari S., Turcotte G., Dhib R., Ein-Mozaffari F.: CFD modeling of the mixing of water in oil emulsions. Comput. Chem. Eng. 45(2012), 124–136.
- [54] Kiran R., Ahmed R., Salehi S.J.: Experiments and cfd modelling for two phase flow in a vertical annulus. 153(2020), 201–211.
- [55] Renze P., Buffo A., Marchisio D.L., Vanni M.: Simulation of coalescence, breakup, and mass transfer in polydisperse multiphase flows. Chem. Ing. Tech. 86(2014),1088–1098.
- [56] Luewisutthichat W., Tsutsumi A., Yoshida K.: Bubble characteristics in multi-phase flow systems: Bubble sizes and size distributions. J. Chem. Eng. Japan 30(1997), 461–466.
- [57] Deendarlianto A.M., Widyaparaga A., Dinaryanto O., Khasani I.: CFD studies on the gas-liquid plug two-phase flow in a horizontal pipe. J. Petrol.Sci. Eng. 147(2016),779–787.
- [58] Julia J.E., Ozar B., Dixit A., Jeong J.-J., Hibiki T., Ishii M.: Axial development of flow regime in adiabatic upward two-phase flow in a vertical annulus. J. Fluids Eng. 131(2009), 021302.
- [59] Caetano E.F., Shoham O., Brill J.P.: Upward vertical two-phase flow through an annulus — Part II: Modeling bubble, slug, and annular flow. J. Energ. Res. Technol.114(1992), 14–30.
- [60] Ibarra R., Nossen J., Tutkun M.: Two-phase gas-liquid flow in concentric and fully eccentric annuli. Part II: Model development, flow regime transition algorithm and pressure gradient. Chem. Eng. Sci. 203(2019), 501–510.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-938ab8ba-edaf-4d22-859a-ac1d9bb209bb