Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2017 | Vol. 69, nr 1 | 75--100
Tytuł artykułu

Nanofluid flow and heat transfer in boundary layers at small nanoparticle volume fraction: Zero nanoparticle flux at solid wall

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The continuum formulation is applied to the developing boundary layer problem, which approximates the entrance region of nanofluid flow in micro channels or tubes. The thermophysical properties are expressed as “equations of state” as functions of the local nanofluid volume fraction. Based on experimental utilization of nanofluid prevalently at small volume fraction of nanoparticles, a simple perturbation procedure is used to expand dependent variables in ascending powers of the volume fraction. The zeroth order problems are the Blasius velocity boundary layer and the Pohlhausen thermal boundary layer. These are accompanied by the volume fraction diffusion equation. In detailed applications, the boundary condition of zero-volume flux at a solid wall is specified and yields an “insulated wall” solution of constant volume fraction. Two property cases are calculated as comparisons: one is the use of mixture properties for the nanofluid density and heat capacity and the transport properties prevalently used in the literature attributed to Einstein and to Maxwell. Results for alumina are compared to experiments. The theory underestimates the experimental results. This leads to the second comparison, between “conventional” properties and those obtained from molecular dynamics computations available for gold-water nanofluids. The latter properties considerably increased the heat transfer enhancement relative to “conventional” properties and heat transfer enhancement is comparable to the enhanced skin friction rise. To fully appreciate the potential of nanofluids and heat transfer enhancement, further molecular dynamics computations of properties of nanofluids, including transport properties, accompanied by careful laboratory experiments on velocity and temperature profiles are suggested.
Wydawca

Rocznik
Strony
75--100
Opis fizyczny
Bibliogr. 22 poz.
Twórcy
  • School of Engineering EN2760 and the Center for Fluid Mechanics Brown University Providence, Rhode Island 02912, U.S.A, joseph_liu@brown.edu
  • School of Engineering EN2760 and the Center for Fluid Mechanics Brown University Providence, Rhode Island 02912, U.S.A
autor
  • School of Engineering EN2760 and the Center for Fluid Mechanics Brown University Providence, Rhode Island 02912, U.S.A
autor
  • School of Engineering EN2760 and the Center for Fluid Mechanics Brown University Providence, Rhode Island 02912, U.S.A
  • School of Engineering EN2760 and the Center for Fluid Mechanics Brown University Providence, Rhode Island 02912, U.S.A
  • School of Engineering EN2760 and the Center for Fluid Mechanics Brown University Providence, Rhode Island 02912, U.S.A.
Bibliografia
  • 1. J.T.C. Liu, On the anomalous laminar heat transfer intensification in developing region of nanofluid flow in channels or tubes, Proc. R. Soc. A. 468, 2383–2398, 2012 (doi:10.1098/rspa.2011.0671).
  • 2. D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer, 47, 5181–5188, 2004 (doi:10.1016/j.ijheatmasstransfer.2004.07.012).
  • 3. J.-Y. Jung, H.-S. Oh, H.-Y. Kwak, Forced convective heat transfer of nanofluids in micro channels, Int. J. Heat Mass Transfer, 52, 466–472, 2009 (doi:10.1016/j.ijheatmasstransfer.2008.03.033).
  • 4. J. Buongiorno, Convective transport in nanofluids, ASME J. Heat Transfer, 128, 240–250, 2006 (doi:10.1115/1.2150834).
  • 5. R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, 2nd ed., Hoboken, N.J., Wiley, 2001.
  • 6. R.F. Probstein, Physicochemical Hydrodynamics: An Introduction, 2nd ed., Hoboken, N.J., Wiley, 2003.
  • 7. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids, Hoboken, N.J., Wiley, 1964.
  • 8. E. Pfautsch, Forced convection in nanofluids over a flat plate, M.Sc. Thesis, University of Missouri, 2008.
  • 9. H. Schlichting, Boundary Layer Theory, 7th ed. (transl. J. Kestin), NY, McGraw Hill, 1979.
  • 10. E. Pohlhausen, Der Wärmeaustausch zwischen festen Körpern und Flüssigkeiten mit kleiner Reibung und kleiner Wärmeleitung, Z. A. M. M. 1, 115–121, 1921 (doi:10.1002/zamm.19210010205).
  • 11. L. Lees, Laminar heat transfer over blunt nose bodies at hypersonic flight speeds, Jet Propulsion J. ARS., 26, 259–269, 274, 1956 (doi:10.2514/8.6977).
  • 12. P.A. Lagerstrom, Laminar Flow Theory, Princeton Univ. Press, 1996.
  • 13. J. Buongiorno et al., A benchmark study on the thermal conductivity of nanofluids, J. Appl. Phys., 106, 094312, 2009 (doi:10.1063/1.3245330).
  • 14. D.C. Venerus et al., Viscosity measurements on colloidal dispersions (nanofluids) for heat transfer applications, Appl. Rheol., 20, 44582-1-44582-7, 2010.
  • 15. G. Puliti, Properties of Gold-Water Nanofluids Using Molecular Dynamics, PhD Thesis, Univ. Notre Dame, 2012.
  • 16. G. Puliti, S. Paolucci, M. Sen, Thermodynamic properties of gold-water nanofluids using molecular dynamics, J. Nanopart. Res., 14, 1296, 2012 (doi: 10.1007/s11051-012-1296-4).
  • 17. S. Paolucci, G. Puliti, Properties of nanofluids, Heat Transfer Enhancement with Nanofluids, V. Bianco, O. Manca, S. Nardini & K. Vafai [Eds.], N.Y.: CRC., 1–44, 2015.
  • 18. H. Chen, Y. Ding, Heat transfer and rheological behavior of nanofluids – A review, Advances in Transport Phenomena, 1, 135–177, L.Q. Wang [Ed.], Heidelberg, Springer, 2009.
  • 19. N. Prabhat, J. Buongiorno, L.-W. Hu, A critical evaluation of anomalous convective heat transfer enhancement in nanofluids, [in:] Abstract in Nanofluids: Fundamentals and Applications II, 15–19 August 2010, Montréal. New York, 2010; (also as N. Prabhat, M.S. Thesis, Department of Nuclear Science and Engineering, MIT, http:libguides.mit.edu/diss), 2010.
  • 20. N. Prabhat, J. Buongiorno, L.-W. Hu, Convective heat transfer enhancement in nanofluids: real anomaly or analysis artifact?, [in:] Proc. ASME/JSME 2011 8th Thermal Engineering Joint Conf., 13–17 March 2011, Honolulu. Paper No. AJTEC2011-44020, 2011.
  • 21. Y. Ding et al., Heat transfer intensification using nanofluids, KONA, no. 25, 23–38, 2007.
  • 22. R. Sabir, N. Ramzan, A. Umer, H. Muryam, An experimental study of forced convection heat transfer characteristic of gold water nanofluid in laminar flow, Sci. Int. (Lahore), 27, 235–241, 2015.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9380fb8a-58a2-454f-b008-a05c6b26f296
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.