Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2014 | Vol. 20, nr 1 | 15--27
Tytuł artykułu

Multiplication of the distributions (x±i0)z

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In previous work of the author, a convolution and multiplication product for the set of Associated Homogeneous Distributions (AHDs) with support in ℝ was defined and fully investigated. Here this definition is used to calculate the multiplication product of homogeneous distributions of the form (x±i0)z, for all z∈C. Multiplication products of AHDs generally contain an arbitrary constant if the resulting degree of homogeneity is a negative integer, i.e., if it is a critical product. However, critical products of the forms (x+i0)a.(x+i0)b and (x−i0)a.(x−i0)b, with a+b∈Z−, are exceptionally unique. This fact combined with Sokhotskii–Plemelj expressions then leads to linear dependencies of the arbitrary constants occurring in products like δ(k).δ(l), η(k).δ(l), δ(k).η(l) and η(k).η(l) for all k,l∈N (η≜1πx−1). This in turn gives a unique distribution for products like δ(k).η(l)+η(k).δ(l) and δ(k).δ(l)−η(k).η(l). The latter two products are of interest in quantum field theory and appear for instance in products of the partial derivatives of the zero-mass two-point Wightman distribution.
Wydawca

Rocznik
Strony
15--27
Opis fizyczny
Bibliogr. 28 poz.
Twórcy
Bibliografia
  • [1] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, 9th ed., Dover, New York, 1970.
  • [2] P. Antosik, J. Mikusinski and R. Sikorski, Theory of Distributions. The Sequential Approach, Elsevier, Amsterdam, 1973.
  • [3] N. N. Bogoliubov, A. A. Logunov and I. T. Todorov, Introduction ta Axiomatic Quantum Field Theory, Benjamin, Reading, 1975.
  • [4] N. N. Bogoliubov and D. V. Shirkov, Introduction to the Theory of Quantized Fields, Interscience, New York, 1959.
  • [5] H.J. Bremermann and L. Durand, On analytic continuation, multiplication, and Fourier transformations of Schwartz distributions, J. Math. Phys. 2 (1961), 240-258.
  • [6] J. F. Colom beau, New Generalized Functions and Multiplication of Distributions, North-Holland, Amsterdam, 1984.
  • [7] F. J. Dyson, The S-matrix in quantum electrodynamics, Phys. Rev. (2) 75 (1949), 1736-1755.
  • [8] B. Fisher, The product of the distributions, Proc. Cambridge Philos. Soc. 72 (1972), 201-204.
  • [9] G. R. Franssens, Structure theorems for associated homogeneous distributions based on the line, Math. Methods Appl. Sci. 32 (2009), 986-1010.
  • [10] G. R. Franssens, The convolution of associated homogeneous distributions on R. I, Appl. Anal. 88 (2009), 309-331.
  • [11] G. R. Franssens, The convolution of associated homogeneous distributions on R. II, Appl. Anal. 88 (2009), 333-356.
  • [12] G. R. Franssens, Convolution product formula for associated homogeneous distributions on R, Math. Methods Appl. Sci. 34 (2011), 703-727.
  • [13] G. R. Franssens, Multiplication product formula for associated homogeneous distributions on R, Math. Methods Appl. Sci. 34 (2011), 1460-1471.
  • [14] G. R. Franssens, One-dimensional associated homogeneous distributions, Bull. Math. Anal. Appl. 3 (2011), 1-60.
  • [15] G. R. Franssens, On the impossibility of the convolution of distributions, Cuba 15 (2013), 71-77.
  • [16] G. R. Franssens, The convolution and multiplication of one-dimensional associated homogeneous distributions, Math. Methods Appl. Sci. 36 (2013), 1014-1027.
  • [17] S. Gasiorowicz, Elementary Particle Physics, John Wiley & Sons, New York, 1966.
  • [18] I. M. Gel’fand and G. E. Shilov, Generalized Functions. Vol. I, Academic Press, New York, 1964.
  • [19] W. Güttinger, Products of improper operators and the renormalization problem in quantum field theory, Progr. Theoret. Phys. 134 (1955), 612-626.
  • [20] R. P. Kanwal, Generalized Functions - Theory and Technique, 2nd ed., Birkhauser-Verlag, Basel, 1998.
  • [21] E. L. Koh and L. C. Kuan, On the distributions δk and (δ’)k, Math. Nachr.157 (1992), 243-248.
  • [22] J. Mikusinski, On the square of the Dirac delta-distribution, Bull. Acad. Pol. Sci. Ser. Sci. Math. Astron. Phys. 14 (1966), 511-513.
  • [23] M. Oberguggenberger, Multiplication of Distributions and Applications to Partial Differential Equations, Longman, Harlow, 1992.
  • [24] L. Schwartz, Sur l’impossibilite de la multiplication des distributions, C.R. Math. Acad. Sci. Paris 239 (1954), 847-848.
  • [25] L. Schwartz, Theorie des Distributions. Vol. I-II, Hermann, Paris, 1957.
  • [26] V. M. Shelkovich, Associated and quasi associated homogeneous distributions (generalized functions), J. Math. Anal. Appl. 338 (2008), 48-70.
  • [27] A. H. Zemanian, Distribution Theory and Transform Analysis, Dover, New York, 1965.
  • [28] C. L. Zhi and B. Fisher, Several products of distributions on Rm, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 426 (1989), 425-439.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9350615c-f0fb-4fca-98c6-05236f7b49c7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.