Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | nr 77 (149) | 5--13
Tytuł artykułu

Machinability analysis of thin-walled carbon fiber reinforced ceramic composites based on wire electrical discharge machining

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We propose employing wire electrical discharge machining (WEDM) for shaping thin-walled, multidirectional, carbon fiber reinforced silicon carbide (Cf-SiC) composite parts. Ceramic matrix composite Cf-SiC combines the outstanding mechanical properties of the carbon fiber with oxidation, abrasive wear, corrosion resistance, and high strength at the high temperature of the silicon carbide matrix. The impact of time-related electrical discharge machining parameters (pulse ON-time and break OFF-time) on the material removal rate and surface roughness are analyzed. The material removal rate of the Cf-SiC is proved to be 36% lower than that for machined steel grade 55. The high thermal stresses and interaction of the composite accompanying WEDM are also discussed. Furthermore, an alternative mechanism to the WEDM of metals has been investigated and confirmed by a scanning electron microscopy (SEM) analysis. The morphology of the machined Cf-SiC surface demonstrates the dominance of the carbon fibers’ fracture mechanism, both the transverse and longitudinal forms, with interphase detachment over craters and micro-cracks, pitting, and spalling on the SiC matrix. Satisfactory roughness indicators (Sa = 2 µm) are obtained in 3D topography measurements of the Cf-SiC surfaces. Concluding, the WEDM should be considered a good alternative to Cf-SiC abrasive machining when cutting holes, grooves, keyways, splines, and other complex shapes.
Wydawca

Rocznik
Strony
5--13
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
  • Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland, dariusz.poros@pwr.edu.pl
  • Wrocław University of Science and Technology, Faculty of Mechanical and Power Engineering 27 Wybrzeże Wyspiańskiego St., 50-370 Wrocław, Poland
Bibliografia
  • 1. Armanios, E., Bucinell, R., Wilson, D.W., Ramulu, M., Jenkins, M.G. & Guo, Z. (2001) Abrasive Water Jet Machining Mechanisms in Continuous-Fiber Ceramic Composites. Journal of Composites Technology and Research 23 (2), pp. 82‒91, doi: 10.1520/CTR10916J.
  • 2. Buk, J. (2022) Surface Topography of Inconel 718 Alloy in Finishing WEDM. Advances in Science and Technology ‒ Research Journal 16/1, pp. 47–61, doi: 10.12913/ 22998624/142962.
  • 3. Dong, X. & Shin, Y.C. (2017) Improved machinability of SiC/SiC ceramic matrix composite via laser-assisted micromachining. The International Journal of Advanced Manufacturing Technology 90, pp. 731‒739, doi: 10.1007/ s00170-016-9415-5.
  • 4. Du, J., Ming, W., Ma, J., He, W., Cao, Y., Li, X. & Liu, K. (2018) New observations of the fiber orientations effect on machinability in grinding of C/SiC ceramic matrix composite. Ceramics International 44 (12), pp. 13916–13928, doi: 10.1016/j.ceramint.2018.04.240.
  • 5. Du, J., Zhang, H., Geng, Y., Ming, W., He, W., Ma, J., Cao, Y., Li, X. & Liu, K. (2019) A review on machining of carbon fiber reinforced ceramic matrix composites. Ceramics International 45 (15), pp. 18155‒18166, doi: 10.1016/j.ceramint. 2019.06.112.
  • 6. Fujihara, K., Ohshiba, K., Komatsu, T., Ueno, M., Ohmori, H. & Bandyopadhyay, B.P. (1997) Precision surface grinding characteristics of ceramic matrix composites and structural ceramics with electrolytic in-process dressing. Machining Science and Technology 1 (1), pp. 81‒94, doi: 10.1080/10940349708945639.
  • 7. Gábrišová, Z., Švec, P. & Brusilová, A. (2020) Effect of Mechanical Properties on Wear Resistance of Si3N4 – SiC Ceramic Composite. Advances in Science and Technology ‒ Research Journal 14 (4), pp. 156–167, doi: 10.12913/ 22998624/127355.
  • 8. Gupta, K. (2021) Intelligent Machining of Shape Memory Alloys. Advances in Science and Technology ‒ Research Journal 15 (3), pp. 43–53, doi: 10.12913/22998624/138303.
  • 9. Guu, Y.H., Hocheng, H., Tai, N.H. & Liu, S.Y. (2001) Effect of electrical discharge machining on the characteristics of carbon fiber reinforced carbon composites. Journal of Materials Science 36 (8), pp. 2037‒2043, doi: 10.1023/ A:1017539100832.
  • 10. Hamatani, G. & Ramulu, M. (1990) Machinability of High Temperature Composites by Abrasive Waterjet. Journal of Engineering Materials and Technology 112 (4), pp. 381‒386, doi: 10.1115/1.2903346.
  • 11. He, W.B., He, S.T., Du, J.G., Ming, W., Ma, J., Caao, Y. & Li, X. (2019) Fiber orientations effect on process performance for wire cut electrical discharge machining (WEDM) of 2D C/SiC composite. The International Journal of Advanced Manufacturing Technology 102 (1), pp. 507‒518, doi: 10.1007/s00170-018-03210-y.
  • 12. Hocheng, H., Guu, Y.H. & Tai, N.H. (1998) The Feasibility Analysis of Electrical-Discharge Machining of Carbon-Carbon Composites. Material and Manufacturing Processes 13 (1), pp. 117‒132, doi: 10.1080/10426919808935223.
  • 13. Ishfaq, K., Mufti, N.A., Ahmad, J., Sajid, M. & Jahanzaib, M. (2018) Analysis of the Effect of Wire Electric Dischage Machining Process Parameters for the Formation of High Speed Steel Form Tool. Advances in Science and Technology ‒ Research Journal 12 (1), pp. 89–98, doi: 10.12913/22998624/81001.
  • 14. Krenkel, W. (2005) Carbon Fiber Reinforced Silicon Carbide Composites (C/SiC, C/C-SiC). Springer, Boston: Handbook of Ceramic Composites.
  • 15. Neubrand, A., Hausherr, J.M., Lauer, A., Weiss, R. & Wilhelmi, C. (2015) Investigation of cutting-induced damage in CMC bend bars. MATEC Web of Conferences 29, 00004, doi: 10.1051/matecconf/20152900004.
  • 16. Polański, Z. (1984) Planning of experiments in technology. Warsaw: National Scientific Publishers.
  • 17. Poroś, D. (2021) Comparative analysis of different WEDM strategies applied to cut WC-Co cemented carbides. Advances in Science and Technology ‒ Research Journal 15 (4), pp. 126‒135, doi: 10.12913/22998624/142561.
  • 18. Wei, C.J., Liu, J., Xu, Z.H. & Xu, Q.Q. (2015) EDM of ceramic matrix composite with fiber reinforcement. Electromach. Mould 1, pp. 25‒29.
  • 19. Wiśniewska, M., Pudłowski, M., Gauggel, C. & Poroś, D. (2022) Investigation of abrasive cutting of ceramic matrix composites based on thin-walled elements using diamond wire. Tehnički Vjesnik ‒ Technical Gazette 29 (2), pp. 641‒645, doi: 10.17559/TV-20210201120826.
  • 20. Yue, X., Li, Q. & Yang, X. (2020) Influence of thermal stress on material removal of Cf-SiC composite in EDM. Ceramics International 46 (6), pp. 7998‒8009, doi: 10.1016/j. ceramint.2019.12.022.
  • 21. Zhang, X., Yu, T., Li, M. & Wang, Z. (2020) Effect of machining parameters on the milling process of 2.5D C/SiC ceramic matrix composites. Machining Science and Technology 24 (2), pp. 227‒244, doi: 10.1080/10910344.2019.1636271.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-934a40dc-1515-4305-9184-df609c48ae89
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.