Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | R. 99, nr 11 | 114--120
Tytuł artykułu

Invasive and non-invasive glucose monitoring systems: a review and comparative study

Treść / Zawartość
Warianty tytułu
PL
Inwazyjne i nieinwazyjne systemy monitorowania glukozy: przegląd i badanie porównawcze
Języki publikacji
EN
Abstrakty
EN
As the incidence of diabetes has expanded worldwide in recent years, an increasing number of patients are experiencing pain and infections because to the invasive nature of the majority of commercial glucose measurement systems. The availability of reliable, low-cost, painless, noninvasive technology will promote patient compliance to routine blood glucose monitoring. The life of the diabetic patient will thereafter significantly improve. Several technologies have been proposed and developed by scientists and researchers in an attempt to enhance their effectiveness. This study reviewed both invasive and non-invasive glucose monitoring techniques, with an emphasis on optical methods. Non-invasive glucose monitoring devices that are painless, sensitive, and transportable are being suggested and developed to better understand glucose levels.
PL
Ponieważ częstość występowania cukrzycy wzrosła na całym świecie w ostatnich latach, coraz większa liczba pacjentów doświadcza bólu i infekcji ze względu na inwazyjny charakter większości komercyjnych systemów pomiaru glukozy. Dostępność niezawodnej, niedrogiej, bezbolesnej i nieinwazyjnej technologii ułatwi pacjentom przestrzeganie rutynowego monitorowania stężenia glukozy we krwi. Życie pacjenta z cukrzycą ulegnie następnie znacznej poprawie. Kilka technologii zostało zaproponowanych i opracowanych przez naukowców i badaczy w celu zwiększenia ich skuteczności. W badaniu tym dokonano przeglądu zarówno inwazyjnych, jak i nieinwazyjnych technik monitorowania glikemii, z naciskiem na metody optyczne. Sugerowane i opracowywane są nieinwazyjne urządzenia do monitorowania glukozy, które są bezbolesne, czułe i przenośne, aby lepiej zrozumieć poziomy glukozy.
Słowa kluczowe
Wydawca

Rocznik
Strony
114--120
Opis fizyczny
Bibliogr. 106 poz., rys., tab.
Twórcy
  • Technical Engineering College of Mosul, Northern Technical University, Mosul, Iraq
  • Medical College, University of Mosul, Mosul, IRAQ
  • Technical Engineering College of Mosul, Northern Technical University, Mosul, Iraq
  • Technical Engineering College of Mosul, Northern Technical University, Mosul, Iraq
Bibliografia
  • [1] L. Chen, B. Tuo, and H. Dong, “Regulation of intestinal glucose absorption by ion channels and transporters,” Nutrients, vol. 8, no. 1, pp. 1–11, 2016, doi: 10.3390/nu8010043.
  • [2] M. S. Burhans, D. K. Hagman, J. N. Kuzma, K. A. Schmidt, and M. Kratz, “Contribution of adipose tissue inflammation to the development of type 2 diabetes mellitus,” Compr. Physiol., vol. 9, no. 1, pp. 1–58, 2019, doi: 10.1002/cphy.c170040.
  • [3] A. Petersmann et al., “Definition, Classification and Diagnosis of Diabetes Mellitus,” Exp. Clin. Endocrinol. Diabetes, vol. 126, no. 7, pp. 406–410, 2018, doi: 10.1055/a-0584-6223.
  • [4] Z. Punthakee, R. Goldenberg, and P. Katz, “Definition, Classification and Diagnosis of Diabetes, Prediabetes and Metabolic Syndrome,” Can. J. Diabetes, vol. 42, pp. S10–S15, 2018, doi: 10.1016/j.jcjd.2017.10.003.
  • [5] J. K. Alwan, D. S. Jaafar, and I. R. Ali, “Diabetes diagnosis system using modified Naive Bayes classifier,” Indones. J. Electr. Eng. Comput. Sci., vol. 28, no. 3, pp. 1766–1774, 2022, doi: 10.11591/ijeecs.v28.i3.pp1766-1774.
  • [6] D. Care and S. S. Suppl, “Classification and diagnosis of diabetes: Standards of medical care in Diabetesd2018,” Diabetes Care, vol. 41, no. January, pp. S13–S27, 2018, doi: 10.2337/dc18-S002.
  • [7] A. M. Egan and S. F. Dinneen, “What is diabetes?,” Med. (United Kingdom), vol. 47, no. 1, pp. 1–4, 2019, doi: 10.1016/j.mpmed.2018.10.002.
  • [8] W. V. Gonzales, A. T. Mobashsher, and A. Abbosh, The progress of glucose monitoring—A review of invasive to minimally and noninvasive techniques, devices and sensors, vol. 19, no. 4. 2019. doi: 10.3390/s19040800.
  • [9] S. Nukui et al., “Risk of Hyperglycemia and Hypoglycemia in Patients with Acute Ischemic Stroke Based on Continuous Glucose Monitoring,” J. Stroke Cerebrovasc. Dis., vol. 28, no. 12, p. 104346, 2019, doi: 10.1016/j.jstrokecerebrovasdis.2019.104346.
  • [10] A. Abu-Samah, N. N. A. Razak, U. K. Jamaludin, F. M. Suhaimi, and A. M. Ralib, “Determination of favorable blood glucose target range for stochastic TARgeted (STAR) glycemic control in Malaysia,” Indones. J. Electr. Eng. Comput. Sci., vol. 15, no. 1, pp. 133–141, 2019, doi: 10.11591/ijeecs.v15.i1.pp133-141.
  • [11] H. Sun et al., “IDF Diabetes Atlas: Global, regional and countrylevel diabetes prevalence estimates for 2021 and projections for 2045,” Diabetes Res. Clin. Pract., vol. 183, p. 109119, 2022, doi: 10.1016/j.diabres.2021.109119.
  • [12] D. Bruen, C. Delaney, L. Florea, and D. Diamond, “Glucose sensing for diabetes monitoring: Recent developments,” Sensors (Switzerland), vol. 17, no. 8, pp. 1–21, 2017, doi: 10.3390/s17081866.
  • [13] K. E. Toghill and R. G. Compton, “Electrochemical non-enzymatic glucose sensors: A perspective and an evaluation,” Int. J. Electrochem. Sci., vol. 5, no. 9, pp. 1246–1301, 2010.
  • [14] B. Alsunaidi, M. Althobaiti, M. Tamal, W. Albaker, and I. Al-Naib, “A review of non-invasive optical systems for continuous blood glucose monitoring,” Sensors, vol. 21, no. 20, 2021, doi: 10.3390/s21206820.
  • [15] T. Shang et al., “Products for Monitoring Glucose Levels in the Human Body With Noninvasive Optical, Noninvasive Fluid Sampling, or Minimally Invasive Technologies,” J. Diabetes Sci. Technol., vol. 16, no. 1, pp. 168–214, 2022, doi: 10.1177/19322968211007212.
  • [16] R. Ajjan, D. Slattery, and E. Wright, “Continuous Glucose Monitoring: A Brief Review for Primary Care Practitioners,” Adv. Ther., vol. 36, no. 3, pp. 579–596, 2019, doi: 10.1007/s12325-0190870-x.
  • [17] N. Moodley, U. Ngxamngxa, M. J. Turzyniecka, and T. S. Pillay, “Historical perspectives in clinical pathology: A history of glucose measurement,” J. Clin. Pathol., vol. 68, no. 4, pp. 258–264, 2015, doi: 10.1136/jclinpath-2014-202672.
  • [18] S. R. Patton and M. A. Clements, “Continuous glucose monitoring versus self-monitoring of blood glucose in children with type 1 diabetes-the pros and cons,” US Endocrinol., vol. 8, no. 1, pp. 2729, 2012, doi: 10.17925/use.2012.08.01.27.
  • [19] D. M. Nathan, “The diabetes control and complications trial/epidemiology of diabetes interventions and complications study at 30 years: Overview,” Diabetes Care, vol. 37, no. 1, pp. 9–16, 2014, doi: 10.2337/dc13-2112.
  • [20] M. Care, “Standards of medical care in diabetes-2010,” Diabetes Care, vol. 33, no. SUPPL. 1, 2010, doi: 10.2337/dc10-S011.
  • [21] E. I. Georga, V. C. Protopappas, D. Polyzos, and D. I. Fotiadis, “Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models,” Med. Biol. Eng. Comput., vol. 53, no. 12, pp. 1305–1318, 2015, doi: 10.1007/s11517-015-1263-1.
  • [22] K. Zarkogianni et al., “Comparative assessment of glucose prediction models for patients with type 1 diabetes mellitus applying sensors for glucose and physical activity monitoring,” Med. Biol. Eng. Comput., vol. 53, no. 12, pp. 1333–1343, 2015, doi: 10.1007/s11517-015-1320-9.
  • [23] K. M. Bratlie, R. L. York, M. A. Invernale, R. L. Langer, and D. G. Anderson, “Materials for diabetes therapeutics,” Adv. Healthc. Mater., vol. 1, no. 3, pp. 267–284, 2012, doi: 10.1002/adhm.201200037.
  • [24] A. N. Paradigm, “for a New Paradigm in Testing Glucose,” Society, vol. 4, no. 5, pp. 1027–1031, 2010.
  • [25] S. Kumar Das, K. K. Nayak, P. R. Krishnaswamy, V. Kumar, and N. Bhat, “Review—Electrochemistry and Other Emerging Technologies for Continuous Glucose Monitoring Devices,” ECS Sensors Plus, vol. 1, no. 3, p. 031601, 2022, doi: 10.1149/27542726/ac7abb.
  • [26] I. Lee, D. Probst, D. Klonoff, and K. Sode, “Continuous glucose monitoring systems - Current status and future perspectives of the flagship technologies in biosensor research -,” Biosens. Bioelectron., vol. 181, no. February, p. 113054, 2021, doi: 10.1016/j.bios.2021.113054.
  • [27] R. Mahzabin, F. H. Sifat, S. Anjum, A. A. Nayan, and M. G. Kibria, “Blockchain associated machine learning and IoT based hypoglycemia detection system with auto-injection feature,” Indones. J. Electr. Eng. Comput. Sci., vol. 27, no. 1, pp. 447–455, 2022, doi: 10.11591/ijeecs.v27.i1.pp447-455.
  • [28] C. Berget, S. Lange, L. Messer, and G. P. Forlenza, “A clinical review of the t:slim X2 insulin pump,” Expert Opin. Drug Deliv., vol. 17, no. 12, pp. 1675–1687, 2020, doi: 10.1080/17425247.2020.1814734.
  • [29] S. K. Vashist, “Continuous Glucose Monitoring Systems: A Review,” Diagnostics, vol. 3, no. 4, pp. 385–412, 2013, doi: 10.3390/diagnostics3040385.
  • [30] P. Aschner et al., “Global guideline for type 2 diabetes,” Diabetes Res. Clin. Pract., vol. 104, no. 1, pp. 1–52, 2014, doi: 10.1016/j.diabres.2012.10.001.
  • [31] L. Tang, S. J. Chang, C. J. Chen, and J. T. Liu, “Non-invasive blood glucose monitoring technology: A review,” Sensors (Switzerland), vol. 20, no. 23, pp. 1–32, 2020, doi: 10.3390/s20236925.
  • [32] P. Moström, E. Ahlén, H. Imberg, P. O. Hansson, and M. Lind, “Adherence of self-monitoring of blood glucose in persons with type 1 diabetes in Sweden,” BMJ Open Diabetes Res. Care, vol. 5, no. 1, 2017, doi: 10.1136/bmjdrc-2016-000342.
  • [33] P. Makaram, D. Owens, and J. Aceros, “Trends in NanomaterialBased Non-Invasive Diabetes Sensing Technologies,” Diagnostics, vol. 4, no. 2, pp. 27–46, 2014, doi: 10.3390/diagnostics4020027.
  • [34] K. Ramya, A. Indu, B. Akhila, G. Aswini, and P. B. Babu, “Blood Glucose Monitoring Techniques,” vol. 8, no. 2, pp. 26–32, 2021.
  • [35] J. Smith, “The Pursuit of Noninvasive Glucose : Hunting the Deceitful Turkey The Pursuit of Noninvasive Glucose : ‘ Hunting the Deceitful Turkey ’ By John L . Smith Copyright 2006 by John L . Smith,” no. January 2006, 2014.
  • [36] M. Shokrekhodaei and S. Quinones, “Review of non-invasive glucose sensing techniques: Optical, electrical and breath acetone,” Sensors (Switzerland), vol. 20, no. 5, 2020, doi: 10.3390/s20051251.
  • [37] O. El-Gayar, P. Timsina, N. Nawar, and W. Eid, “A systematic review of IT for diabetes self-management: Are we there yet?,” Int. J. Med. Inform., vol. 82, no. 8, pp. 637–652, 2013, doi: 10.1016/j.ijmedinf.2013.05.006.
  • [38] Z. Lu et al., “A point of care electrochemical impedance spectroscopy device,” Int. Syst. Chip Conf., vol. 2016-Febru, no. 5 mV, pp. 240–244, 2016, doi: 10.1109/SOCC.2015.7406955.
  • [39] I. Gouzouasis et al., “Detection of varying glucose concentrations in water solutions using a prototype biomedical device for millimeterwave non-invasive glucose sensing,” 2016 10th Eur. Conf. Antennas Propagation, EuCAP 2016, pp. 2–5, 2016, doi: 10.1109/EuCAP.2016.7481921.
  • [40] M. Baghelani, Z. Abbasi, M. Daneshmand, and P. E. Light, “Noninvasive continuous-time glucose monitoring system using a chipless printable sensor based on split ring microwave resonators,” Sci. Rep., vol. 10, no. 1, pp. 1–15, 2020, doi: 10.1038/s41598-020-69547-1.
  • [41] J. Hanna et al., “Wearable flexible body matched electromagnetic sensors for personalized non-invasive glucose monitoring,” Sci. Rep., vol. 12, no. 1, pp. 1–12, 2022, doi: 10.1038/s41598-02219251-z.
  • [42] R. Zhang et al., “Noninvasive electromagneticwave sensing of glucose,” Sensors (Switzerland), vol. 19, no. 5, 2019, doi: 10.3390/s19051151.
  • [43] E. Park, J. Baik, H. Kim, S.-M. Park, and C. Kim, “Non-invasive glucose measurement with ultrasound-modulated optical sensing,” no. Mdic, p. 15, 2021, doi: 10.1117/12.2576875.
  • [44] N. A. Bazaev, Y. P. Masloboev, and S. V. Selishchev, “Optical Methods for Noninvasive Blood Glucose Monitoring,” Biomed. Eng. (NY)., vol. 45, no. 6, pp. 229–233, 2012, doi: 10.1007/s10527-0129249-x.
  • [45] S. Delbeck, T. Vahlsing, S. Leonhardt, G. Steiner, and H. M. Heise, “Non-invasive monitoring of blood glucose using optical methods for skin spectroscopy—opportunities and recent advances,” Anal. Bioanal. Chem., vol. 411, no. 1, pp. 63–77, 2019, doi: 10.1007/s00216-018-1395-x.
  • [46] D. C. Klonoff, “Noninvasive blood glucose monitoring,” Diabetes Care, vol. 20, no. 3, pp. 433–437, 1997, doi: 10.2337/diacare.20.3.433.
  • [47] S. Liakat, K. A. Bors, L. Xu, C. M. Woods, J. Doyle, and C. F. Gmachl, “Noninvasive in vivo glucose sensing on human subjects using mid-infrared light,” Biomed. Opt. Express, vol. 5, no. 7, p. 2397, 2014, doi: 10.1364/boe.5.002397.
  • [48] S. A. Siddiqui, Y. Zhang, J. Lloret, H. Song, and Z. Obradovic, “Pain-Free Blood Glucose Monitoring Using Wearable Sensors: Recent Advancements and Future Prospects,” IEEE Rev. Biomed. Eng., vol. 11, no. c, pp. 21–35, 2018, doi: 10.1109/RBME.2018.2822301.
  • [49] K. Takeuchi and B. Kim, “Functionalized microneedles for continuous glucose monitoring,” Nano Converg., vol. 5, no. 1, 2018, doi: 10.1186/s40580-018-0161-2.
  • [50] P. Bollella, S. Sharma, A. E. G. Cass, F. Tasca, and R. Antiochia, “Highly Porous Gold Microneedles-Based Biosensor : Characterization and Application in Artificial Interstitial Fluid,” Catalysts, vol. 9, no. 580, pp. 1–14, 2019.
  • [51] F. Ribet, G. Stemme, and N. Roxhed, “Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system,” Biomed. Microdevices, vol. 20, no. 4, 2018, doi: 10.1007/s10544-018-0349-6.
  • [52] Y. Xue, A. S. Thalmayer, S. Zeising, G. Fischer, and M. Lübke, Commercial and Scientific Solutions for Blood Glucose Monitoring—A Review, vol. 22, no. 2. 2022. doi: 10.3390/s22020425.
  • [53] M. H. Hassan, C. Vyas, B. Grieve, and P. Bartolo, “Recent advances in enzymatic and non-enzymatic electrochemical glucose sensing,” Sensors, vol. 21, no. 14, 2021, doi: 10.3390/s21144672.
  • [54] C. G. Juan, B. Potelon, C. Quendo, and E. Bronchalo, “Microwave planar resonant solutions for glucose concentration sensing: A systematic review,” Appl. Sci., vol. 11, no. 15, 2021, doi: 10.3390/app11157018.
  • [55] M. Zhao and P. S. Leung, “Revisiting the use of biological fluids for noninvasive glucose detection,” Future Med. Chem., vol. 12, no. 8, pp. 645–647, 2020, doi: 10.4155/fmc-2020-0019.
  • [56] K. Dixit, S. Fardindoost, A. Ravishankara, N. Tasnim, and M. Hoorfar, “Exhaled breath analysis for diabetes diagnosis and monitoring: Relevance, challenges and possibilities,” Biosensors, vol. 11, no. 12, 2021, doi: 10.3390/bios11120476.
  • [57] M. Mohammadifar, M. Tahernia, and S. Choi, “An Equipment-Free, Paper-Based Electrochemical Sensor for Visual Monitoring of Glucose Levels in Urine,” SLAS Technol., vol. 24, no. 5, pp. 499505, 2019, doi: 10.1177/2472630319846876.
  • [58] J. Zhang, J. Liu, H. Su, F. Sun, Z. Lu, and A. Su, “A wearable selfpowered biosensor system integrated with diaper for detecting the urine glucose of diabetic patients,” Sensors Actuators, B Chem., vol. 341, no. April, p. 130046, 2021, doi: 10.1016/j.snb.2021.130046.
  • [59] Y. Zhang, J. Sun, L. Liu, and H. Qiao, “A review of biosensor technology and algorithms for glucose monitoring,” J. Diabetes Complications, vol. 35, no. 8, p. 107929, 2021, doi: 10.1016/j.jdiacomp.2021.107929.
  • [60] X. Xiao, Q. Yu, Q. Li, H. Song, and T. Kikkawa, “Precise Noninvasive Estimation of Glucose Using UWB Microwave with Improved Neural Networks and Hybrid Optimization,” IEEE Trans. Instrum. Meas., vol. 70, no. c, 2021, doi: 10.1109/TIM.2020.3010680.
  • [61] V. Turgul and I. Kale, “Simulating the Effects of Skin Thickness and Fingerprints to Highlight Problems with Non-Invasive RF Blood Glucose Sensing from Fingertips,” IEEE Sens. J., vol. 17, no. 22, pp. 7553–7560, 2017, doi: 10.1109/JSEN.2017.2757083.
  • [62] M. Hofmann, G. Fischer, R. Weigel, and D. Kissinger, “Microwavebased noninvasive concentration measurements for biomedical applications,” IEEE Trans. Microw. Theory Tech., vol. 61, no. 5, pp. 2195–2204, 2013, doi: 10.1109/TMTT.2013.2250516.
  • [63] H. Choi et al., “Design and in Vitro Interference Test of Microwave Noninvasive Blood Glucose Monitoring Sensor,” IEEE Trans. Microw. Theory Tech., vol. 63, no. 10, pp. 3016–3025, 2015, doi: 10.1109/TMTT.2015.2472019.
  • [64] A. E. Omer, S. Gigoyan, G. Shaker, and S. Safavi-Naeini, “WGMBased Sensing of Characterized Glucose- Aqueous Solutions at mm-Waves,” IEEE Access, vol. 8, pp. 38809–38825, 2020, doi: 10.1109/ACCESS.2020.2975805.
  • [65] J. Vrba, J. Karch, and D. Vrba, “Phantoms for development of microwave sensors for noninvasive blood glucose monitoring,” Int. J. Antennas Propag., vol. 2015, 2015, doi: 10.1155/2015/570870.
  • [66] S. Kim et al., “Noninvasive in vitro measurement of pig-blood dglucose by using a microwave cavity sensor,” Diabetes Res. Clin. Pract., vol. 96, no. 3, pp. 379–384, 2012, doi: 10.1016/j.diabres.2012.01.018.
  • [67] R. Narang et al., “Sensitive, Real-time and Non-Intrusive Detection of Concentration and Growth of Pathogenic Bacteria using Microfluidic-Microwave Ring Resonator Biosensor,” Sci. Rep., vol. 8, no. 1, pp. 1–10, 2018, doi: 10.1038/s41598-018-34001-w.
  • [68] A. Tura, S. Sbrignadello, D. Cianciavicchia, G. Pacini, and P. Ravazzani, “A low frequency electromagnetic sensor for indirect measurement of glucose concentration: In vitro experiments in different conductive solutions,” Sensors, vol. 10, no. 6, pp. 5346-5358, 2010, doi: 10.3390/s100605346. 10.3390/s8053335.
  • [69] J. Chung, H. So, Choi, and T. K. S. Wong, “Recent advances in noninvasive glucose monitoring,” Med. Devices Evid. Res., p. 45, 2012, doi: 10.2147/mder.s28134.
  • [70] M. Gourzi et al., “Non-invasive glycaemia blood measurements by electromagnetic sensor: Study in static and dynamic blood circulation,” J. Med. Eng. Technol., vol. 29, no. 1, pp. 22–26, 2005, doi: 10.1080/03091900410001720247.
  • [71] I. Harman-Boehm, A. Gal, A. M. Raykhman, J. D. Zahn, E. Naidis, and Y. Mayzel, “Noninvasive glucose monitoring: A novel approach,” J. Diabetes Sci. Technol., vol. 3, no. 2, pp. 253–260, 2009, doi: 10.1177/193229680900300205.
  • [72] J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Prospects and limitations of non-invasive blood glucose monitoring using nearinfrared spectroscopy,” Biomed. Signal Process. Control, vol. 18, pp. 214–227, 2015, doi: 10.1016/j.bspc.2015.01.005.
  • [73] G. Han, S. Chen, X. Wang, J. Wang, H. Wang, and Z. Zhao, “Noninvasive blood glucose sensing by near-infrared spectroscopy based on PLSR combines SAE deep neural network approach,” Infrared Phys. Technol., vol. 113, no. December 2020, p. 103620, 2021, doi: 10.1016/j.infrared.2020.103620.
  • [74] P. Jain, R. Maddila, and A. M. Joshi, “A precise non-invasive blood glucose measurement system using NIR spectroscopy and Huber’s regression model,” Opt. Quantum Electron., vol. 51, no. 2, pp. 115, 2019, doi: 10.1007/s11082-019-1766-3.
  • [75] S. S. Mohammed Sheet and M. S. Jarjees, “Microcontroller based in vitro hematocrit measurement system,” Indones. J. Electr. Eng. Comput. Sci., vol. 18, no. 2, pp. 717–723, 2020, doi: 10.11591/ijeecs.v18.i2.pp717-723.
  • [76] M. Aloraefy, T. Joshua Pfefer, J. C. Ramella-Roman, and K.E. Sapsford, “In vitro evaluation of fluorescence glucose biosensor response,” Sensors (Switzerland), vol. 14, no. 7, pp. 12127–12148, 2014, doi: 10.3390/s140712127.
  • [77] H. Zhai, Y. Bai, J. Qin, and F. Feng, “Colorimetric and ratiometric fluorescence dual-mode sensing of glucose based on carbon quantum dots and potential UV/fluorescence of o-diaminobenzene,” Sensors (Switzerland), vol. 10.3390/s19030674. 19, no. 3, 2019, doi:
  • [78] M. J. Cho and S. Y. Park, “Carbon-dot-based ratiometric fluorescence glucose biosensor,” Sensors Actuators, B Chem., vol. 282, pp. 719–729, 2019, doi: 10.1016/j.snb.2018.11.055.
  • [79] D. C. Klonoff, “Overview of fluorescence glucose sensing: A technology with a bright future,” J. Diabetes Sci. Technol., vol. 6, no. 6, pp. 1242–1250, 2012, doi: 10.1177/193229681200600602.
  • [80] R. Pandey et al., “Noninvasive Monitoring of Blood Glucose with Raman Spectroscopy,” Acc. Chem. Res., vol. 50, no. 2, pp. 264272, 2017, doi: 10.1021/acs.accounts.6b00472.
  • [81] N. B. Davison, C. J. Gaffney, J. G. Kerns, and Q. D. Zhuang, “Recent Progress and Perspectives on Non-Invasive Glucose Sensors,” Diabetology, vol. 3, no. 1, pp. 56–71, 2022, doi: 10.3390/diabetology3010005.
  • [82] J. W. Kang et al., “Direct observation of glucose fingerprint using in vivo Raman spectroscopy,” Sci. Adv., vol. 6, no. 4, pp. 2–10, 2020, doi: 10.1126/sciadv.aay5206.
  • [83] D. R. Parachalil, J. McIntyre, and H. J. Byrne, “Potential of Raman spectroscopy for the analysis of plasma/serum in the liquid state: recent advances,” Anal. Bioanal. Chem., vol. 412, no. 9, pp. 19932007, 2020, doi: 10.1007/s00216-019-02349-1.
  • [84] Y. Jin, Y. Yin, C. Li, H. Liu, and J. Shi, “Non-Invasive Monitoring of Human Health by Photoacoustic Spectroscopy,” Sensors, vol. 22, no. 3, pp. 1–14, 2022, doi: 10.3390/s22031155.
  • [85] Y. Tanaka, T. Tajima, M. Seyama, and K. Waki, “Differential Continuous Wave Photoacoustic Spectroscopy for Non-Invasive Glucose Monitoring,” IEEE Sens. J., vol. 20, no. 8, pp. 4453–4458, 2020, doi: 10.1109/JSEN.2019.2962251.
  • [86] N. A. B. A. Salam, W. H. B. M. Saad, Z. B. Manap, and F. Bte Salehuddin, “The evolution of non-invasive blood glucose monitoring system for personal application,” J. Telecommun. Electron. Comput. Eng., vol. 8, no. 1, pp. 59–65, 2016.
  • [87] I. Osiecka and T. Pałko, “Overview of some non-invasive spectroscopic methods of glucose level monitoring,” Acta BioOptica Inform. Medica. Inz. Biomed., vol. 22, no. 1, pp. 1–8, 2016, [Online]. Available: https://www.infona.pl/resource/bwmeta1.element.baztech0da018fd-b2ae-4dd6-b9c3-95e925c4ab3b
  • [88] T. Fei, W. Xiaohao, W. Dongsheng, and L. Junfeng, “Non-invasive glucose measurement by use of metabolic heat conformation method,” Sensors, vol. 8, no. 5, pp. 3335–3344, 2008, doi:
  • [89] R. Takeuchi, K. Nagao, and H. Miyamoto, “Non-Invasive Diabetes Prediction Method Based on Metabolic Heat Conformation Theory and Machine Learning,” J. Mech. Electr. Intell. Syst. J. Mech. Elect. Intel. Syst, vol. 4, no. 1, pp. 42–49, 2021, [Online]. Available: http://jmeis.e-jikei.org/ARCHIVES/v04n01/JMEIS_v04n01a005.pdf
  • [90] A. Srivastava, M. K. Chowdhury, S. Sharma, and N. Sharma, “Blood Glucose Monitoring Using Non Invasive Optical Method: Design Limitations and Challenges,” Int. J. Adv. Res. Electr. Electron. Instrum. Eng., vol. 2, no. 1, pp. 615–620, 2013, [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1089.7890&rep=rep1&type=pdf%0Awww.ijareeie.com
  • [91] S. Jang, “Review of Emerging Approaches in Non- or Minimally Invasive Glucose Monitoring and their Application to Physiological Human Body Fluids,” Int. J. Biosens. Bioelectron., vol. 4, no. 2, 2018, doi: 10.15406/ijbsbe.2018.04.00087.
  • [92] R. A. Gabbay and S. Sivarajah, “Optical coherence tomographybased continuous noninvasive glucose monitoring in patients with diabetes,” Diabetes Technol. Ther., vol. 10, no. 3, pp. 188–193, 2008, doi: 10.1089/dia.2007.0277.
  • [93] R. He, “Effects of optical clearing agents on noninvasive blood glucose monitoring with optical coherence tomography: a pilot study,” J. Biomed. Opt., vol. 17, no. 10, p. 101513, 2012, doi: 10.1117/1.jbo.17.10.101513.
  • [94] J. Yadav, A. Rani, V. Singh, and B. M. Murari, “Comparative Study of Different Measurement Sites Using NIR Based Non-invasive Glucose Measurement System,” Procedia Comput. Sci., vol. 70, pp. 469–475, 2015, doi: 10.1016/j.procs.2015.10.082.
  • [95] X. Li and C. Li, “Research on non-invasive glucose concentration measurement by NIR transmission,” Proc. 2015 IEEE Int. Conf. Comput. Commun. ICCC 2015, pp. 223–228, 2016, doi: 10.1109/CompComm.2015.7387571.
  • [96] K. Aishwarya Lakshmi, R. Rashmi, S. Sadanand, C. K. Narayanappa, and N. Sriram, “Studies on relating to monitoring blood glucose levels using non-invasive optical methods,” RTEICT 2017 - 2nd IEEE Int. Conf. Recent Trends Electron. Inf. Commun. Technol. Proc., vol. 2018-Janua, pp. 2111–2113, 2017, doi: 10.1109/RTEICT.2017.8256972.
  • [97] J. D. Campbell, “Development of non-invasive , optical methods for central cardiovascular monitoring,” no. Cvd, 2022.
  • [98] J. L. Hammond, N. Formisano, P. Estrela, S. Carrara, and J. Tkac, vol. “Electrochemical biosensors and nanobiosensors,” Essays Biochem., 60, no. 1, pp. 69–80, 2016, doi: 10.1042/EBC2.0150008
  • [99] B. Paul, M. P. Manuel, and Z. C. Alex, “Design and development of non invasive glucose measurement system,” Proc. - ISPTS-1, 1st Int. Symp. Phys. Technol. Sensors, pp. 43–46, 2012, doi: 10.1109/ISPTS.2012.6260873.
  • [100] Z. Li, G. Li, W. J. Yan, and L. Lin, “Classification of diabetes and measurement of blood glucose concentration noninvasively using near infrared spectroscopy,” Infrared Phys. Technol., vol. 67, pp. 574–582, 2014, doi: 10.1016/j.infrared.2014.09.040.
  • [101] B. Javid, F. G. Faranak, and F. S. Zakeri, “Noninvasive optical diagnostic techniques for mobile blood glucose and bilirubin monitoring,” J. Med. Signals Sens., vol. 8, no. 3, pp. 125–139, 2018, doi: 10.4103/jmss.JMSS-8-18.
  • [102] P. P. Pai, P. Kumar Sanki, A. De, and S. Banerjee, “NIR photoacoustic spectroscopy for non-invasive glucose measurement,” Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. EMBS, vol. 2015-Novem, pp. 7978–7981, 2015, doi: 10.1109/EMBC.2015.7320243.
  • [103] A. Asaduzzaman, S. Samadarsinee, and K. K. Chidella, “Simulating multisensor noninvasive blood glucose monitoring systems,” Conf. Proc. - IEEE SOUTHEASTCON, vol. 2016-July, 2016, doi: 10.1109/SECON.2016.7506765.
  • [104] L. N. Bachache, J. A. Hasan, and A. Q. Al-Neami, “Acoustooptic Design to Measure Glucose Level for Diabetic Patients Noninvasively,” J. Phys. Conf. Ser., vol. 1818, no. 1, pp. 0–17, 2021, doi: 10.1088/1742-6596/1818/1/012147.
  • [105] J. Yadav, A. Rani, V. Singh, and B. M. Murari, “LevenbergMarquardt-Based Non-Invasive Blood Glucose Measurement System,” IETE J. Res., vol. 64, no. 1, pp. 116–123, 2018, doi: 10.1080/03772063.2017.1351313.
  • [106] C. Tronstad et al., “Non-invasive prediction of blood glucose trends during hypoglycemia,” Anal. Chim. Acta, vol. 1052, pp. 3748, 2019, doi: 10.1016/j.aca.2018.12.009.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9347dd0c-7337-4fe7-a51d-e1575ac2d8e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.