Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 17, no 2 | 342--352
Tytuł artykułu

A Short Overview of the Possibilities of Using Waste from the Agri-Food Industry

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The agri-food industry is a source of various substrates - plants as well as plant and animal residues or waste, which can be recycled. Determining the yield of agri-food waste processing products that can be obtained from them, as well as estimating the local availability of a given raw material allows for the selection of appropriate substrates that guarantee both their effective production and their continuous supply. The presented article includes a review of scientific reports on the acquisition of bioactive substances, substrates for the production of activated carbon and materials for use in construction from waste from the agri-food industry. Moreover, the article discusses the economic aspects of agri-food waste in terms of bioeconomy.
Wydawca

Rocznik
Strony
342--352
Opis fizyczny
Bibliogr. 69 poz., rys., tab.
Twórcy
  • Department of Agri‑Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Science, Institute of Civil Engineering and Energetics, Bialystok University of Technology, ul. Wiejska 45A, 15‑351 Białystok, Poland, m.joka@pb.edu.pl
  • Department of Chemistry, Biology, and Biotechnology, Faculty of Civil Engineering and Environmental Science, Institute of Civil Engineering and Energetics, Bialystok University of Technology, ul. Wiejska 45E, 15‑351 Białystok, Poland, m.kalinowska@pb.edu.pl
  • Department of Civil Engineering and Road Engineering, Institute of Civil Engineering, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15‑351 Bialystok, Poland, k.kalinowska@pb.edu.pl
  • Department of Chemistry, Biology, and Biotechnology, Faculty of Civil Engineering and Environmental Science, Institute of Civil Engineering and Energetics, Bialystok University of Technology, ul. Wiejska 45E, 15‑351 Białystok, Poland, e.golebiewska@pb.edu.pl
  • Students’ Scientific Club ROLKA, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, ul. Wiejska 45A, 15‑351 Białystok, Poland, piotr.tarasewicz96@wp.pl
  • Students’ Scientific Club ROLKA, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, ul. Wiejska 45A, 15‑351 Białystok, Poland, bobinas97@gmail.com
  • Students’ Scientific Club ROLKA, Faculty of Civil Engineering and Environmental Science, Bialystok University of Technology, ul. Wiejska 45A, 15‑351 Białystok, Poland, dominik.tarapata@wp.pl
  • Department of Technology in Environmental Engineering, Faculty of Civil Engineering and Environmental Science, Institute of Civil Engineering and Energetics, Bialystok University of Technology, ul. Wiejska 45A, 15‑351 Białystok, Poland, e.szatylowicz@pb.edu.pl
  • Department of Agri‑Food Engineering and Environmental Management, Faculty of Civil Engineering and Environmental Science, Institute of Civil Engineering and Energetics, Bialystok University of Technology, ul. Wiejska 45A, 15‑351 Białystok, Poland, j.piekut@pb.edu.pl
Bibliografia
  • 1. EC, 2008. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives (text with EEA relevance) [WWW document]. URL https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L009, (accessed on 20 June 2022).
  • 2. Study of the Central Statistical Office 2022.
  • 3. Journal of Laws UE, L, 312,22.11.2008, https://eur-lex.europa.eu/legal-content/PL/TXT/HTML/?uri=OJ:L:2008:312:FULL&from=DA, (accessed on 20 June 2022).
  • 4. Wąsowicz M., Deszczka-Tarnowska M. Rational waste management as a project for the economic security of the country. JoMS 2015; 24(1): 229–247. [in Polish].
  • 5. Faostat (Food and Agriculture Organization of the United Nations). Available online: https://www.fao.org/faostat/en/#home (accessed on 20 June 2022).
  • 6. French, L., Hamman, L., Katz, S., Kozaki, Y., Frew, J. Zero waste strategies for gills onions sustainable innovation and waste management. Donald Bren School of Environmental Science and Management, University of Calif., Santa Barbara 2010; 2–3.
  • 7. Kowalczyk-Juśko, A., Zywer, S. Parameters of waste biomass in the light of its usefulness for the power industry. Buses 2011; 10: 236–240. DOI: 10.1533/9780857098924 [in Polish].
  • 8. Arendt, E.K., Zannini, E. Rye cereal grains for the food and beverage industries, Woodhead Publishing Limited, Cambridge 2013; 220–243.
  • 9. Bushuk, W.R., Wrigley. Encyclopedia of Grain Science. Oxford: Elsevier 2004.
  • 10. Kamel, B.S., Kakuda, Y. Characterization of the seed oil and meal from apricot, cherry, nectarine, peach and plum. JAOCS 1992; 69(5): 492–494. DOI: 10.1007/BF02540957.
  • 11. Kowalczyk, R., Piwnicki, Ł. Fruit pits as a valuable secondary raw material for the food industry. Advances in food processing techniques 2007; 2: 62–66. [in Polish].
  • 12. Yilmaz, C., Gokmen, V. Compositional characteristics of sour cherry kernel and its oil as influenced by different extraction and roasting conditions. Industrial Crops and Products 2013; 49: 130–135. DOI: 10.1016/j.indcrop.2013.04.048.
  • 13. Obidziński, S. Analysis of usability of potato pulp as solid fuel. Fuel Processing Technology 2012; 94(1): 67–74.
  • 14. Paes, J., Dotta, R., Barbero, G.F., Martínez, J. Extraction of phenolic compounds and anthocyanins from blueberry (Vaccinium myrtillus L.) residues using supercritical CO2 and pressurized liquids. J. Supercrit. Fluids 2014; 95: 8–16. DOI: 10.1016/J.SUPFLU.2014.07.025.
  • 15. Giannuzzo, A.N., Boggetti, H.J., Nazareno, M.A., Mishima, H.T. Supercritical fluid extraction of naringin from the peel of Citrus paradisi. Phytochem. Anal. 2013; 14(4): 221–223. DOI: 10.1002/PCA.706.
  • 16. Casas, L., Mantell, C., Rodríguez, M., Ossa, E.J.M. de la; Roldán, A., Ory, I. De, Caro, I., Blandino, A. Extraction of resveratrol from the pomace of Palomino fino grapes by supercritical carbon dioxide. J. Food Eng. 2010; 96(2): 304–308. DOI: 10.1016/J.JFOODENG.2009.08.002.
  • 17. Castro-Vargas, H.I., Rodríguez-Varela, L.I., Ferreira, S.R.S., Parada-Alfonso, F. Extraction of phenolic fraction from guava seeds (Psidium guajava L.) using supercritical carbon dioxide and co-solvents. J. Supercrit. Fluids 2010; 51(3): 319–324. DOI: 10.1016/J.SUPFLU.2009.10.012.
  • 18. Goli, A.H., Barzegar, M., Sahari, M.A. Antioxidant activity and total phenolic compounds of pistachio (Pistachia vera) hull extracts. Food Chem. 2005; 92(3): 521–525. DOI: 10.1016/J.FOOD-CHEM.2004.08.020.
  • 19. Chang, C.J., Chiu, K.L., Chen, Y.L., Chang, C.Y. Separation of catechins from green tea using carbon dioxide extraction. Food Chem. 2000; 68(1): 109–113. DOI: 10.1016/S0308–8146(99)00176–4.
  • 20. Lasta, H.F.B., Lentz, L., Mezzomo, N., Ferreira, S.R.S. Supercritical CO2 to recover extracts enriched in antioxidant compounds from beetroot aerial parts. Biocatal. Agric. Biotechnol. 2019; 19(1): 101169. DOI: 10.1016/J.BCAB.2019.101169.
  • 21. Okuno, S., Yoshinaga, M., Nakatani, M., Ishiguro, K., Yoshimoto, M., Morishita, T., Uehara, T., Kawano, M. Extraction of Antioxidants in Sweet-potato Waste Powder with Supercritical Carbon Dioxide. Food Sci. Technol. Res. 2002; 8(2): 154–157. DOI: 10.3136/FSTR.8.154.
  • 22. Andrade Lima, M., Charalampopoulos, D., Chatzifragkou, A. Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. J. Supercrit. Fluids 2018; 133: 94–102. DOI: 10.1016/J.SUPFLU.2017.09.028.
  • 23. Vulić, J.J., Ćebović, T.N., Ćanadanović-Brunet, J.M., Ćetković, G.S., Čanadanović, V.M., Djilas, S.M., Tumbas Šaponjac, V.T. In vivo and in vitro antioxidant effects of beetroot pomace extracts. J. Funct. Foods 2013; 6(1): 168–175. DOI: 10.1016/J.JFF.2013.10.003.
  • 24. Wu, Z.G., Xu, H.Y., Ma, Q., Cao, Y., Ma, J.N., Ma, C.M. Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel. Food Chem. 2012; 135(4): 2425–2429. DOI: 10.1016/J.FOODCHEM.2012.07.019.
  • 25. Nobre, B.P., Palavra, A.F., Pessoa, F.L.P., Mendes, R.L. Supercritical CO2 extraction of trans-lycopene from Portuguese tomato industrial waste. Food Chem. 2009; 116(3): 680–685. DOI: 10.1016/J.FOODCHEM.2009.03.011.
  • 26. Friedman, M., Kozukue, N., Kim, H.J., Choi, S.H., Mizuno, M. Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and Russet potatoes. J. Food . Anal. 2017; 62: 69–75. DOI: 10.1016/J.JFCA.2017.04.019.
  • 27. Encalada, A.M.I., Pérez, C.D., Flores, S.K., Rossetti, L., Fissore, E.N., Rojas, A.M. Antioxidant pectin enriched fractions obtained from discarded carrots (Daucus carota L.) by ultrasound-enzyme assisted extraction. Food Chem. 2019; 289: 453–460. DOI: 10.1016/J.FOODCHEM.2019.03.078.
  • 28. Gonzales, G.B., Raes, K., Coelus, S., Struijs, K., Smagghe, G., Van Camp, J. (Ultra(high)-pressure liquid chromatography–electrospray ionization-time-of-flight-ion mobility-high definition mass spectrometry for the rapid identification and structural characterization of flavonoid glycosides from cauliflower waste. J. Chromatogr. A 2014; 1323: 39–48. DOI: 10.1016/J.CHROMA.2013.10.077
  • 29. Wang, J., Sun, B., Cao, Y., Tian, Y., Li, X. Optimisation of ultrasound-assisted extraction of phenolic compounds from wheat bran. Food Chem 2008; 106(2): 804–810. DOI: 10.1016/J.FOODCHEM.2007.06.062.
  • 30. Zubrik, A., Matik, M., Hredzák, S., Lovás, M., Danková, Z., Kováčová, M., Briančin, J. Preparation of chemically activated carbon from waste biomass by single-stage and two-stage pyrolysis. J.Clean. Prod. 2017; 143: 643–653. DOI: 10.1016/J.JCLEPRO.2016.12.061.
  • 31. Danish, M., Ahmad, T. A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew. Sustain. Energy Rev. 2018; 87: 1–21. DOI:10.1016/J.RSER.2018.02.003.
  • 32. Gao, Y., Yue, Q., Gao, B., Li, A. Insight into activated carbon from different kinds of chemical activating agents: A review. Sci. Total Environ. 2020; 746(9): 141094. DOI: 10.1016/J.SCITOTENV.2020.141094.
  • 33. Ioannidou, O., Zabaniotou, A. Agricultural residues as precursors for activated carbon production – A review. Renew. Sustain. Energy Rev. 2007; 11(9): 1966–2005. DOI: 10.1016/J.RSER.2006.03.013.
  • 34. Nowicki, P., Kazmierczak, J., Pietrzak, R. Comparison of physicochemical and sorption properties of activated carbons prepared by physical and chemical activation of cherry stones. Powder Technol. 2015; 269: 312–319. DOI: 10.1016/J.POWTEC.2014.09.023.
  • 35. Kyzas, G.Z., Deliyanni, E.A., Matis, K.A. Activated carbons produced by pyrolysis of waste potato peels: Cobalt ions removal by adsorption. Colloids Surfaces A Physicochem. Eng. Asp. 2016; 490: 74–83. DOI: 10.1016/J.COLSURFA.2015.11.038.
  • 36. Veerakumar, P., Panneer Muthuselvam, I., Hung, C. Te, Lin, K.C., Chou, F.C., Liu, S. Bin Biomass-Derived Activated Carbon Supported Fe3O4 Nanoparticles as Recyclable Catalysts for Reduction of Nitroarenes. ACS Sustain. Chem. Eng. 2016; 4(12): 6772–6782. DOI: 10.1021/acssuschemeng.6b01727.
  • 37. Ma, Y. Comparison of Activated Carbons Prepared from Wheat Straw via ZnCl2 and KOH Activation. Waste and Biomass Valorization 2017; 8(3): 549–559. DOI: 10.1007/S12649–016–9640-z.
  • 38. Wang, B., Li, Y., Si, H., Chen, H., Zhang, M., Song, T. Analysis of the Physical and Chemical Properties of Activated Carbons Based on Hulless Barley Straw and Plain Wheat Straw Obtained by H3PO4 Activation. BioResources 2019; 13(3): 5204–5212. DOI: 10.15376/BIORES.13.3.5204–5212.
  • 39. Zhang, Z., Luo, X., Liu, Y., Zhou, P., Ma, G., Lei, Z., Lei, L. A low cost and highly efficient adsorbent (activated carbon) prepared from waste potato residue. J. Taiwan Inst. Chem. Eng. 2015; 49: 206–211. DOI: 10.1016/J.JTICE.2014.11.024.
  • 40. Chen, X., Wu, K., Gao, B., Xiao, Q., Kong, J., Xiong, Q., Peng, X., Zhang, X., Fu, J. Three-Dimensional Activated Carbon Recycled from Rotten Potatoes for High-performance Supercapacitors. Waste and Biomass Valorization 2016; 7(3): 551–557. DOI: 10.1007/S12649–015–9458–0.
  • 41. Moreno-Piraján, J.C., Giraldo, L. Activated carbon obtained by pyrolysis of potato peel for the removal of heavy metal copper (II) from aqueous solutions. J. Anal. Appl. Pyrolysis 2011; 90(1): 42–47. DOI: 10.1016/J.JAAP.2010.10.004.
  • 42. Osman, A.I., Blewitt, J., Abu-Dahrieh, J.K., Farrell, C., Al-Muhtaseb, A.H., Harrison, J., Rooney, D.W. Production and characterisation of activated carbon and carbon nanotubes from potato peel waste and their application in heavy metal removal. Environ. Sci. Pollut. Res. 2019; 26(2): 37228–37241. DOI: 10.1007/S11356–019–06594-w.
  • 43. Bernardo, M., Rodrigues, S., Lapa, N., Matos, I., Lemos, F., Batista, M.K.S., Carvalho, A.P., Fonseca, I. High efficacy on diclofenac removal by activated carbon produced from potato peel waste. Int. J. Environ. Sci. Technol. 2016; 13(8): 1989–2000. DOI: 10.1007/S13762–016–1030–3.
  • 44. Zhao, S., Xiang, J., Wang, C.Y., Chen, M.M. Characterization and electrochemical performance of activated carbon spheres prepared from potato starch by CO2 activation. J. Porous Mater. 2013; 20(1): 15–20. DOI: 10.1007/S10934–012–9570–5.
  • 45. Wang, D., Liu, S., Fang, G., Geng, G., Ma, J. From Trash to Treasure: Direct Transformation of Onion Husks into Three-Dimensional Interconnected Porous Carbon Frameworks for High-Performance Supercapacitors in Organic Electrolyte. Electrochim. Acta 2016; 216: 405–411. DOI: 10.1016/J.ELECTACTA.2016.09.053.
  • 46. Olivares-Marín, M., Fernández-González, C., MacÍas-García, A., Gómez-Serrano, V. Adsorption of mercury from single and multicomponent metal systems on activated carbon developed from cherry stones. Adsorpt. 2016; 14(4): 601–610. DOI: 10.1007/S10450–008–9111–3.
  • 47. Nowicki, P., Wachowska, H., Pietrzak, R. Active carbons prepared by chemical activation of plum stones and their application in removal of NO2. J. Hazard. Mater. 2010; 181(1–3): 1088–1094. DOI: 10.1016/J.JHAZMAT.2010.05.126.
  • 48. Tseng, R.L. Physical and chemical properties and adsorption type of activated carbon prepared from plum kernels by NaOH activation. J. Hazard. Mater. 2007; 147(3): 1020–1027. DOI: 10.1016/J.JHAZMAT.2007.01.140.
  • 49. Pap, S., Šolević Knudsen, T., Radonić, J., Maletić, S., Igić, S.M., Turk Sekulić, M. Utilization of fruit processing industry waste as green activated carbon for the treatment of heavy metals and chlorophenols contaminated water. J. Clean. Prod. 2017; 162: 958–972. DOI: 10.1016/J.JCLEPRO.2017.06.083.
  • 50. Treviño-Cordero, H., Juárez-Aguilar, L.G., Mendoza-Castillo, D.I., Hernández-Montoya, V., Bonilla-Petriciolet, A., Montes-Morán, M.A. Synthesis and adsorption properties of activated carbons from biomass of Prunus domestica and Jacaranda mimosifolia for the removal of heavy metals and dyes from water. Ind. Crops Prod. 2013; 42(1): 315–323. DOI: 10.1016/J.INDCROP.2012.05.029.
  • 51. Juang, R.S., Wu, F.C., Tseng, R.L. Mechanism of Adsorption of Dyes and Phenols from Water Using Activated Carbons Prepared from Plum Kernels. J. Colloid Interface Sci. 2000; 227(2): 437–444. DOI: 10.1006/JCIS.2000.6912.
  • 52. Wu, F.C., Tseng, R.L., Juang, R.S. Pore structure and adsorption performance of the activated carbons prepared from plum kernels. J. Hazard. Mater. 1999; 69(3): 287–302. DOI: 10.1016/S0304–3894(99)00116–8.
  • 53. Pallarés, J., González-Cencerrado, A., Arauzo, I. Production and characterization of activated carbon from barley straw by physical activation with carbon dioxide and steam. Biomass and Bioenergy 2018; 115: 64–73. DOI: 10.1016/J.BIOMBIOE.2018.04.015.
  • 54. Kolanowski, Graś, M., Bartkowiak, M., Doczekalska, B., Lota, G. Electrochemical Capacitors Based on Electrodes Made of Lignocellulosic Waste Materials. Waste and Biomass Valorization 2020; 11(7): 3863–3871. DOI: 10.1007/S12649–019–00598-w.
  • 55. González-García, P. Activated Carbon from Lignocellulosics Precursors: A Review of the Synthesis Methods, Characterization Techniques and Applications. Renew. Sustain. Energy Rev. 2018; 82: 1393–1414. https://doi.org/10.1016/j.rser.2017.04.117.
  • 56. Abuelnoor, N., AlHajaj, A., Khaleel, M., Vega, L.F., Abu-Zahra, M.R.M. Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere 2021; 282: 131111. DOI: 10.1016/J.CHEMOSPHERE.2021.131111.
  • 57. Serafin, J., Narkiewicz, U., Morawski, A.W., Wróbel, R.J., Michalkiewicz, B. Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions. J. CO2 Util. 2017; 18: 73–79. DOI: 10.1016/J.JCOU.2017.01.006.
  • 58. Rashidi, N.A., Chai, Y.H., Ismail, I.S., Othman, M.F.H., Yusup, S. Biomass as activated carbon precursor and potential in supercapacitor applications. Biomass Convers. Biorefinery 2022; 1: 1–15. DOI: 10.1007/S13399–022–02351–1.
  • 59. Subramaniam, T., Krishnan, S.G., Ansari, M.N.M., Hamid, N.A., Khalid, M. Recent progress on supercapacitive performance of agrowaste fibers: a review. Crit. Rev. Solid State Mater. Sci. 2022; 1–43. DOI: 10.1080/10408436.2022.2052797.
  • 60. Sharma, G., Kaur, M., Punj, S., Singh, K. Biomass as a sustainable resource for value-added modern materials: a review. Biofuels, Bioprod. Biorefining 2020; 14: 673–695. DOI: 10.1002/BBB.2079.
  • 61. Savio, L., Pennacchio, R., Patrucco, A., Manni, V., Bosia, D. Natural Fibre Insulation Materials: Use of Textile and Agri-food Waste in a Circular Economy Perspective. Mater. Circ. Econ. 2022; 4(1): 1–13. DOI: 10.1007/S42824–021–00043–1.
  • 62. Pappu, A., Saxena, M., Asolekar, S.R. Solid wastes generation in India and their recycling potential in building materials. Build. Environ. 2007; 42(6): 2311–2320. DOI: 10.1016/J.BUILDENV.2006.04.015.
  • 63. Kreiker, J., Ar, J.O., Andrada, C., Positieri, M., Gatani, M., Ar, M.O., Crespo, E.Q. Study of peanut husk ashes properties to promote its use as supplementary material in cement mortars. Rev. IBRACON Estruturas e Mater. 2014; 7(6): 905–912. DOI: 10.1590/S1983–41952014000600001.
  • 64. Alabadan, B.A., Njoku, C.F., Yusuf, M.O. The Potentials of Groundnut Shell Ash as Concrete Admixture. Agric. Eng. Int. CIGR Ejournal. Manuscr 2006. BC 05 012, 8, 1–8.
  • 65. Gupta, S., Kua, H.W., Koh, H.J. Application of biochar from food and wood waste as green admixture for cement mortar. Sci. Total Environ. 2018; 619–620: 419–435. DOI: 10.1016/J.SCITOTENV.2017.11.044.
  • 66. Kumar, A., Mohanta, K., Kumar, D., Parkash, O. Properties and Industrial Applications of Rice husk: A review. Int. J. Emerg. Technol. Adv. Eng. 2012; 2: 86–90.
  • 67. Pawluczuk, E., Kalinowska-Wichrowska, K., Soomro, M. Alkali-Activated Mortars with Recycled Fines and Hemp as a Sand. Mater. 2021; 14: 4580. DOI: 10.3390/MA14164580.
  • 68. Mastali, M., Abdollahnejad, Z., Pacheco-Torgal, F. Carbon dioxide sequestration of fly ash alkaline-based mortars containing recycled aggregates and reinforced by hemp fibres. Constr. Build. Mater. 2018; 160: 48–56. DOI: 10.1016/J.CONBUILDMAT.2017.11.044.
  • 69. Bołtryk, M., Krupa, A. Cement composites with an organic filler, modified with admixtures. Building Materials 2015; 1: 48–50. DOI: 10.15199/33.2015.12.14 [in Polish].
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-933ec3d3-f09f-4187-8594-59ab2209f1fb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.