Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2022 | Vol. 22, no. 3 | art. no. e148
Tytuł artykułu

Study on the restoring force model for the high‑speed railway CRTS III Slab Ballastless Track

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The China Railway Track System III (CRTS III) Slab Ballastless Track (SBT) is currently one of China's most widely used track structures. The elastic-plastic restoring force hysteresis model of CRTS III SBT is the primary problem that should be solved for the elastic-plastic seismic response analysis of high-speed railway (HSR) CRTS III SBT systems. To study the elastic-plastic restoring force hysteretic model of CRTS III SBT, four CRTS III SBT specimens were designed in this study and subjected to low-cycle reciprocating load tests. The efects of different thickness of rubber pad on the hysteretic curve, skeleton curve, and other performance of CRTS III SBT specimens were determined. In addition, the restoring force characteristics and hysteretic trends of CRTS III SBT specimens were ascertained. Furthermore, a load-displacement restoring force model for CRTS III SBT was built. Its results were compared with the test results, thus validating the load-displacement restoring force model rationality. The load-displacement restoring force model developed in this study is simple to calculate, laying a solid foundation for analyzing the elastic-plastic seismic responses of HSR CRTS III SBT systems.
Wydawca

Rocznik
Strony
art. no. e148
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
  • School of Civil Engineering, Central South University, Changsha 410075, People’s Republic of China, liulily2019@csu.edu.cn
  • National Engineering Research Center of High-Speed Railway Construction Technology, Changsha 410075, People’s Republic of China
  • School of Civil Engineering, Central South University, Changsha 410075, People’s Republic of China, lzhjiang@csu.edu.cn
  • National Engineering Research Center of High-Speed Railway Construction Technology, Changsha 410075, People’s Republic of China
  • School of Civil Engineering, Central South University, Changsha 410075, People’s Republic of China, zhouwangbao@163.com
  • National Engineering Research Center of High-Speed Railway Construction Technology, Changsha 410075, People’s Republic of China
autor
  • School of Civil Engineering, Central South University, Changsha 410075, People’s Republic of China, yujian95827@163.com
  • National Engineering Research Center of High-Speed Railway Construction Technology, Changsha 410075, People’s Republic of China
autor
  • School of Civil Engineering, Central South University, Changsha 410075, People’s Republic of China, pengkang1998@csu.edu.cn
  • National Engineering Research Center of High-Speed Railway Construction Technology, Changsha 410075, People’s Republic of China
  • School of Civil Engineering, Central South University, Changsha 410075, People’s Republic of China, 204812240@csu.edu.cn
  • National Engineering Research Center of High-Speed Railway Construction Technology, Changsha 410075, People’s Republic of China
Bibliografia
  • 1. Lai Z, Jiang L, Zhou W, Yu J, Zhang Y, Liu X, Zhou W. Lateral girder displacement effect on the safety and comfortability of the high-speed rail train operation. Vehicle Syst Dyn. 2021. https:// doi.org/10.1080/00423114.2021.1942507.
  • 2. Najjar S, Mohammadzadeh Moghaddam A, Sahaf A, Rasaei Yazdani M, Delarami A. Evaluation of the mixed mode (I/II) fracture toughness of cement emulsifed asphalt mortar (CRTSII) using mixture design of experiments. Constr Build Mater. 2019;225:812-28. https://doi.org/10.1016/j.conbuildmat.2019. 07.243.
  • 3. Lou P, Zhu J, Dai G, Yan B. Experimental study on bridge-track system temperature actions for Chinese high-speed railway. Arch Civ Mech Eng. 2018;18(2):451-64. https://doi.org/10.1016/j. Acme.2017.08.006.
  • 4. Jiang L, Liu L, Zhou W. Mapped relationships between pier settlement and rail deformation of bridges with CRTS III SBT. Steel Compos Struct. 2020;36:481-92. https://doi.org/10.12989/scs.2020.36.4.481.
  • 5. Li N, Long G, Fu Q, Song H, Ma C, Ma K, Xie Y, Li H. Dynamic mechanical characteristics of filling layer self-compacting concrete under impact loading. Arch Civ Mech Eng. 2019;19(3):851-61. https://doi.org/10.1016/j.acme.2019.03.007.
  • 6. Lai Z, Jiang L, Liu X, Zhang Y, Zhou W. Analytical investigation on the geometry of longitudinal continuous track in high-speed rail corresponding to lateral bridge deformation. Constr Build Mater. 2020. https://doi.org/10.1016/j.conbuildmat.2020.121064.
  • 7. Lou P, Gong K, Zhao C, Xu Q, Luo RK. Dynamic responses of vehicle-CRTS III slab track system and vehicle running safety subjected to uniform seismic excitation. Shock Vib. 2019;2019:1- 12. https://doi.org/10.1155/2019/5308209.
  • 8. Xu Q, Sun H, Wang L, Xu L, Chen W, Lou P. Influence of vehicle number on the dynamic characteristics of high-speed train-CRTS III slab track-subgrade coupled system. Materials. 2021;14(13):3662. https://doi.org/10.3390/ma14133662.
  • 9. Long G, Liu H, Ma K, Xie Y, Li AW. Development of high-performance self-compacting concrete applied as the filling layer of high-speed railway. J Mater Civ Eng. 2018;2(30):4017268.
  • 10. Li N, Long G, Fu Q, Wang X, Ma K, Xie Y. Effects of freeze and cyclic fexural load on mechanical evolution of filling layer self-compacting concrete. Constr Build Mater. 2019;200:198-208. https://doi.org/10.1016/j.conbuildmat.2018.11.177.
  • 11. Li N, Long G, Fu Q, Ma C, Ma K, Xie Y. Effects of Freeze and cyclic load on impact resistance of filling layer self-compacting concrete (FLSCC). KSCE J Civ Eng. 2019;23(7):2908-18. https:// doi.org/10.1007/s12205-019-1715-5.
  • 12. Ma K, Li S, Long G, Xie Y, Yu L, Xie Q. Performance evolution and damage constitutive model of thin layer SCC under the coupling effect of freeze - thaw cycles and load. J Mater Civ Eng. 2020;6(32):4020147. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003216.
  • 13. Li XR, Huang XQ, Zhang DW, Xue CJ, Zhang AQ. Properties of the concrete for the slab ballastless track of CRTS III. Mater Sci Forum. 2017;898:2071-5. https://doi.org/10.4028/www.scientifc. net/MSF.898.2071.
  • 14. Zhi-ping Z, Jun-dong W, Shi-wen S, Ping L, Shuaibu AA, Weidong W. Experimental study on evolution of mechanical properties of CRTS III ballastless slab track under fatigue load. Constr Build Mater. 2019;210:639-49. https://doi.org/10.1016/j.conbu ildmat.2019.03.080.
  • 15. Jiang W, Xie Y, Wu J, Guo J, Long G. Identifying bonding interface faws in CRTS III type ballastless track structure using the impact-echo method. Eng Struct. 2021;227:111429. https://doi. org/10.1016/j.engstruct.2020.111429.
  • 16. Jiang W, Xie Y, Wu J, Long G. Infuence of age on the detection of defects at the bonding interface in the CRTS III slab ballastless track structure via the impact-echo method. Constr Build Mater. 2020;265:120787. https://doi.org/10.1016/j.conbuildmat. 2020.120787.
  • 17. Jiang W, Xie Y, Li W, Long G. Infuence of bubble defects on the bonding performance of the interlayer interface of the CRTS III slab ballastless track structure. Constr Build Mater. 2021;307:125003. https://doi.org/10.1016/j.conbuildmat.2021. 125003.
  • 18. Sheng X, Zheng W, Zhu Z, Luo T, Zheng Y. Properties of rubber under-ballast mat used as ballastless track isolation layer in high-speed railway. Constr Build Mater. 2020;240:117822. https://doi.org/10.1016/j.conbuildmat.2019.117822.
  • 19. Dybeł P. Effect of bond conditions on local bond-slip relationships of ribbed bars in high performance self-compacting concrete. Arch Civ Mech Eng. 2019;19(4):1399-408. https://doi. org/10.1016/j.acme.2019.09.003.
  • 20. Zeng ZP, Wang XS, Chen WR, Long GC. Infuence analysis of mortar elastic modulus to CRTS III slab track vertical dynamic response. Appl Mech Mater. 2012. https://doi.org/10.4028/ www.scientifc.net/AMM.166-169.314.
  • 21. Yuan Q, Long G, Liu Z, Ma K, Xie Y, Deng D, Huang H. Sealed-space-filling SCC: A special SCC applied in high-speed rail of China. Constr Build Mater. 2016;124:167-76. https://doi. org/10.1016/j.conbuildmat.2016.07.093.
  • 22. Yu Z, Xie Y, Tian X. Research on mechanical performance of CRTS III plate-type ballastless track structure under temperature load based on probability statistics. Adv Civil Eng. 2019;2019:1-16. https://doi.org/10.1155/2019/2975274.
  • 23. Jiang W, Xie Y, Li W, Wu J, Long G. Prediction of the splitting tensile strength of the bonding interface by combining the support vector machine with the particle swarm optimization algorithm. Eng Struct. 2021;230:111696. https://doi.org/10. 1016/j.engstruct.2020.111696.
  • 24. Peng Y, Sheng X, Cheng G. Modelling track and ground vibrations for a slab ballastless track as an infnitely long periodic structure subject to a moving harmonic load. J Sound Vib. 2020;489:115760. https://doi.org/10.1016/j.jsv.2020.115760.
  • 25. Yu Z, Xie Y, Shan Z, Li X. Fatigue performance of CRTS lll slab ballastless track structure under high-speed train load based on concrete fatigue damage constitutive law. J Adv Concr Technol. 2018;16:233-49. https://doi.org/10.3151/jact.16.233.
  • 26. Su M, Xie H, Kang C, Li S. Determination of the interfacial properties of longitudinal continuous slab track via a field test and ANN-based approaches. Eng Struct. 2021;246: 113039. https://doi.org/10.1016/j.engstruct.2021.113039.
  • 27. Zhou L, Wei T, Zhang G, Zhang Y, Gildas MAD, Zhao L, Guo W. Experimental study of the infuence of extremely repeated thermal loading on a ballastless slab track-bridge structure. Appl Sci. 2020;10(2):461. https://doi.org/10.3390/app10020461.
  • 28. Zhang Y, Luo Y, Guo X, Li Y. An updated parametric hysteretic model for steel tubular members considering compressive buckling. J Constr Steel Res. 2021;187: 106953. https://doi.org/10. 1016/j.jcsr.2021.106953.
  • 29. Liu J, Tian L, Ma R, Qu B. Development of a hysteretic model for steel members under cyclic axial loading. J Build Eng. 2022;46: 103798. https://doi.org/10.1016/j.jobe.2021.103798.
  • 30. Lin J, Chen W, Hsiao F, Weng Y, Shen W, Weng P, Chao S, Chung L, Hwang S. Effects of hysteretic models on the seismic evaluation of a collapsed irregular building from bidirectional near-fault ground motions on a shake table. Eng Struct. 2021;247: 113087. https://doi.org/10.1016/j.engstruct.2021.113087.
  • 31. Yang Y, Li W, Xu T, He Z, Zhao D. Experimental study of hysteretic behavior of corroded steel with multi-angle welding joints. J Constr Steel Res. 2021;187: 106990. https://doi.org/10.1016/j. Jcsr.2021.106990.
  • 32. Wang P, Ou Y, Chang K. A new smooth hysteretic model for ductile fexural-dominated reinforced concrete bridge columns. Earthquake Eng Struct Dyn. 2017. https://doi.org/10.1002/eqe. 2875.
  • 33. Han Q, Hu M, Xu K, Du X. Hysteretic behavior and modelling of ultra-high-strength steel bar including buckling. Bull Earthq Eng. 2018. https://doi.org/10.1007/s10518-019-00675-4.
  • 34. Liu L, Jiang L, Liu X, Zhou W, Nie L, Shao G. Research on analytical model of transverse deformation and rail surface deformation of high-speed railway bridge based on Ritz method. J Cent South Univ. 2021;52(12):4349-60. https://doi.org/10.11817/j.issn.1672-7207.2021.12.015 (In Chinese).
  • 35. Jiang L, Liu L, Zhou W, Peng D, Feng Y. Experimental investigation on rubber pad-the key component of isolation layer in CRTS III track of high-speed railway. J Railway Sci Eng. 2022. https://doi.org/10.19713/j.cnki.43-1423/u.
  • 36. Yang N, Zhong Y, Meng Q, Zhang H. Hysteretic behaviors of cold-formed steel beam-columns with hollow rectangular section: experimental and numerical simulations. Thin Wall Struct. 2014;80:217-30. https://doi.org/10.1016/j.tws.2014.03.004.
  • 37. Narendra PVR, Singh KD. Structural performance of elliptical hollow section (EHS) steel tubular braces under extremely low cycle fatigue loading - a fnite element study. Thin-Walled Struct. 2016;109:20216. https://doi.org/10.1016/j.tws.2016.09.025.
  • 38. Feng Y, Jiang L, Zhou W, Han J, Zhang Y, Nie L, Tan Z, Liu X. Experimental investigation on shear steel bars in CRTS II slab ballastless track under low-cyclic reciprocating load. Constr Build Mater. 2020;255: 119425. https://doi.org/10.1016/j.conbuildmat. 2020.119425.
  • 39. Wang D, Dong Y, Zhang D, Wang W, Lu X. Punching shear performance of concrete slabs under fre. Eng Struct. 2020;225: 111094. https://doi.org/10.1016/j.engstruct.2020.111094.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-93392168-9fd6-42c8-8be0-4866cb5500ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.