Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2020 | Vol. 50, iss. 3 | 307--331
Tytuł artykułu

CT inspection of cooled turbine blades

Treść / Zawartość
Warianty tytułu
PL
Badania tomograficzne chłodzonych łopatek turbinowych
Języki publikacji
EN PL
Abstrakty
EN
To improve the engine efficiency by increasing the gas temperature, multi-layer cooling passages are applied in new designs of gas turbine blades. As a result, traditional non-destructive methods, which have been applied so far in the production control, became insufficient. The aim of this manuscript is to develop an inspection method for cooling passages of turbine blades, which would be helpful in detecting manufacturing defects of blades and their operational failures. GE v/tome/x/m 300 was applied to conduct dimensional control and check the interior of two types of turbine blades from turboshaft engines. The procedure for selecting X-ray parameters was suggested. The thickness of walls in the selected cross-section was measured with the accuracy of 0.01 mm, and the selected manufacturing defects of cooling passages were identified.
PL
W celu zwiększenia sprawności silników przez podniesienie temperatury gazów, w nowych konstrukcjach łopatek turbin gazowych stosuje się wielowarstwowe zespoły kanałów chłodzących. W efekcie, tradycyjne metody nieniszczące, stosowane dotychczas w kontroli produkcji stają się niewystarczające. Celem pracy jest opracowanie metodyki inspekcji kanałów chłodzących łopatek turbin do wykrywania wad produkcyjnych łopatek oraz ich uszkodzeń eksploatacyjnych. Zastosowano tomograf GE v/tome/x/m 300 do kontroli wymiarowej i sprawdzenia poprawności wykonania wnętrza dwóch typów łopatek turbiny silnika turbowałowego. Zaproponowano procedurę doboru parametrów prześwietlania. Zmierzono grubość ścian w wybranych przekrojach z dokładnością 0,01 mm oraz zidentyfikowano wybrane wady produkcyjne kanałów chłodzących.
Wydawca

Czasopismo
Rocznik
Strony
307--331
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Air Force Institute of Technology (Instytut Techniczny Wojsk Lotniczych)
  • Air Force Institute of Technology (Instytut Techniczny Wojsk Lotniczych)
  • Air Force Institute of Technology (Instytut Techniczny Wojsk Lotniczych)
  • Ivchenko Progress SE
  • Ivchenko Progress SE
Bibliografia
  • 1. ASTM E2767-13(2018), Standard Practice for Digital Imaging and Communication in Nondestructive Evaluation (DICONDE) for X-ray Computed Tomography (CT) Test Methods, ASTM International, West Conshohocken, PA, 2018. DOI 10.1520/E2767-13R18.
  • 2. Bauer F., Schrapp M., Szijarto J.: Error Investigations for a CT and Additive Manufacturing based Reverse Engineering Workflow. 9th Conference on Industrial Computed Tomography (iCT), 2019. http://www.ndt.net/?id=23648.
  • 3. Besztak K., Jezierski G.: Metody radiologiczne. Opole 1999.
  • 4. Bogard D.G., Thole K.A.: Gas turbine film cooling. Journal of Propulsion and Power, vol. 22, no. 2, 2006, DOI 10.2514/1.18034.
  • 5. Chalimoniuk M., Szczepanik R, Błachnio J.: The rate of decohesion of a gas turbine blade as assessed with the X-ray computed tomography (CT). Journal of KONES Powertrain and Transp, vol. 20, iss. 3, 2013.
  • 6. Gameros A., De Chiffre L., Siller H.R., Hiller J., Genta G.: A reverse engineering methodology for nickel alloy turbine blades with internal features. CIRP Journal of Manufacturing Science and Technology, 9, 2015, DOI 10.1016/j.cirpj.2014.12.001
  • 7. GE Measurement & Control Solutions Phoenix v|tome|x m. Versatile X-ray microfocus CT system for 3D metrology and analysis with up to 300 kV / 500 W https://rsc.aux.eng.ufl.edu/_files/documents/24.pdf
  • 8. Geomagic Design X 3D Reverse Engineering Software https://www.3dsystems.com/software/geomagic-design-x
  • 9. H2020 AERO-UA, D3.5 "Final report on pilot projects in aeroengines". https://www.aero-ua.eu/publications.html
  • 10. Hassler U., Rehak M.: An Image Processing Approach for Radioscopic Inspection of Turbine Blades. Int Symp Digit Ind Radiol Comput Tomogr, 2011.
  • 11. Jing Q., Xie Y., Zhang D.: Effects of Channel Outlet Configuration and Dimple/Protrusion Arrangement on the Blade Trailing Edge Cooling Performance. Applied Sciences, 9(14), 2900, 2019, DOI 10.3390/app9142900.
  • 12. Klingaa C.G., Bjerre M.K., Baier S., De Chiffre L., Mohanty S., Hattel J.H.: Roughness Investigation of SLM Manufactured Conformal Cooling Channels Using X-ray Computed Tomography. e-Journal Nondestruct Test, 03, 2019.
  • 13. Knebel S., Baum O., Högner L., Voigt M., Mailach R., Meyer M.: Robust detection and characterization of cooling holes based on surface meshes of turbine blades. Proc ASME Turbo Expo, 2C-2017, 2017, DOI 10.1115/GT2017-64776.
  • 14. Lübbehüsen J.: Advances in automated high throughput fan beam CT for DICONDE-conform multi-wall turbine blade wall thickness inspection and 3D additive manufactured aerospace part CT inspection. 11th ECNDT. Prague 2014.
  • 15. Metals Affordability Initiative III. Materials & Manufacturing Innovation. https://maihub.org/
  • 16. Muralidhar C., Lukose S.N., Subramanian M.P.: Evaluation of Turbine Blades Using Computed Tomography, 2006.
  • 17. Phoenix datos|x 2 CT software: 3D failure analysis and metrology as fast and efficient as never before. https://www.ita-polska.com.pl/files/phoenix-datosx-ctsoftware-brochure-english-21.pdf
  • 18. Schörner K., Goldammer M., Stephan J.: Scatter correction by modulation of primary radiation in industrial X-ray CT : beam-hardening effects and their correction. Int Symp Comput Tomogr Image Process Ind Radiol, 2011.
  • 19. Shakalo R., Chalimoniuk M. Metody kontrolja vnutrennej polosti ohlazhdaemyh lopatok TVD s perspektivnymi sistemami ohlazhdenija (Methods of control of internal passages of HPT cooled blades with perspective cooling systems). Aerospace Technic and Technology, No 8(160), 2019. http://nbuv.gov.ua/UJRN/aktit_2019_8_22
  • 20. Stimpson C.K., Snyder J.C., Thole K.A., Mongillo D.: Effectiveness measurements of additively manufactured film cooling holes. Journal of Turbomachinery, 140(1), 2018, DOI 10.1115/1.4038182.
  • 21. VGSTUDIO, the Simple Solution for the Visualization of CT Data https://www.volumegraphics.com/en/products/vgstudio.html
  • 22. Vijaya Lakshmi M.R., Mondal A.K., Jadhav C.K., Ravi Dutta B.V., Sreedhar S.: Overview of NDT methods applied on an aero engine turbine rotor blade. Insight: Non-Destructive Testing and Condition Monitoring, 55(9), 2013. DOI 10.1784/insi.2012.55.9.482.
  • 23. Zhao Y., Shinmi A., Zhao X., et al.: Investigation of interfacial properties of atmospheric plasma sprayed thermal barrier coatings with four-point bending and computed tomography technique. Surf Coatings Technol., 206(23), 2012, DOI 10.1016/j.surfcoat.2012.05.099.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9307d931-1225-48af-b0ba-e07f753b60ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.