Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | T. 24 (4) | 491--511
Tytuł artykułu

Parkinson’s disease classificationbased onstacked denoising autoencoder

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most common neurological conditions caused by gradual brain degen-eration is Parkinson’s disease (PD). Although this neurological condition hasno known treatment, early detection and therapy can help patients improvetheir quality of life. An essential patient’s health record is made of medicalimages used to control, manage, and treat diseases. However, in computer-based diagnostics, disease classification is a difficult task because of the timeconsumption and high rate of false positive marks. To overcome this problem, this paper introduces a stacked denoising autoencoder (SDA) for Parkinson’s disease classification. In preprocessing, noise is reduced and important information is retained, resulting in increased performance and data augmentationis performed to avoid overfitting issues and increase the size of the dataset.The main aim of this paper is to derive an optimal feature selection design foran effective Parkinson’s disease classification. Improved Pigeon-Inspired Optimization (IPIO) algorithm is introduced to enhance the performance of the classifier. Thus, the classification result improved by the optimal features and also increased the sensitivity, accuracy, and specificity in the medical image diagnosis. The proposed scheme is implemented in PYTHON and compared with traditional feature selection models and other classification approaches. The efficacy of the performances is evaluated using a Parkinson’s Progression Markers Initiative (PPMI) dataset. The integration of the stacked denoising autoencoder and Improved pigeon inspired optimization method produced the greatest results, with 99.17% accuracy, 98.74% sensitivity, and 98.96% specificity. Furthermore, our finding outperforms the most recent research in the field.
Wydawca

Czasopismo
Rocznik
Tom
Strony
491--511
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
Bibliografia
  • [1] Altay E.V., Alatas B.: Association analysis of Parkinson disease with vocal change characteristics using multi-objective metaheuristic optimization, Medical Hypotheses, vol. 141, 109722, 2020. doi: 10.1016/j.mehy.2020.109722.
  • [2] Butt A.H., Rovini E., Dolciotti C., De Petris G., Bongioanni P., Carboncini M.C., Cavallo F.: Objective and automatic classification of Parkinson disease with Leap Motion controller, Biomedical Engineering Online, vol. 17(1), pp. 1–21, 2018.
  • [3] Cevik F., Kilimci Z.H.: Analysis of Parkinson’s disease using deep learning and word embedding models, Academic Perspective Procedia, vol. 2(3), pp. 786–797, 2019. doi: 10.33793/acperpro.02.03.86.
  • [4] Chakraborty S., Aich S., Kim H.C.: Detection of Parkinson’s disease from 3T T1 weighted MRI scans using 3D convolutional neural network, Diagnostics, vol. 10(6), 402, 2020. doi: 10.3390/diagnostics10060402.
  • [5] Devarajan M., Ravi L.: Intelligent cyber-physical system for an efficient detection of Parkinson disease using fog computing, Multimedia Tools and Applications, vol. 78, pp. 32695–32719, 2019. doi: 10.1007/s11042-018-6898-0.
  • [6] Esmaeilzadeh S., Yang Y., Adeli E.: End-to-End Parkinson Disease Diagnosis using Brain MR-Images by 3D-CNN, arXiv, preprint arXiv:180605233, 2018.
  • [7] Gottapu R.D., Dagli C.H.: Analysis of Parkinson’s disease data, Procedia Computer Science, vol. 140, pp. 334–341, 2018. doi: 10.1016/j.procs.2018.10.306.
  • [8] Grover S., Bhartia S., Akshama, Yadav A., Seeja K.R.: Predicting Severity Of Parkinson’s Disease Using Deep Learning, Procedia Computer Science, vol. 132, pp. 1788–1794, 2018. doi: 10.1016/j.procs.2018.05.154.
  • [9] Gunduz H.: Deep learning-based Parkinson’s disease classification using vocal feature sets, IEEE Access, vol. 7, pp. 115540–115551, 2019. doi: 10.1109/ ACCESS.2019.2936564.
  • [10] Jin B., Qu Y., Zhang L., Gao Z.: Diagnosing Parkinson disease through facial expression recognition: video analysis, Journal of Medical Internet Research, vol. 22(7), e18697, 2020. doi: 10.2196/18697.
  • [11] Karan B., Sahu S.S., Mahto K.: Parkinson disease prediction using intrinsic mode function based features from speech signal, Biocybernetics and Biomedical Engineering, vol. 40(1), pp. 249–264, 2020.
  • [12] Kaur S., Aggarwal H., Rani R.: Diagnosis of Parkinson’s Disease Using Principle Component Analysis and Deep Learning, Journal of Medical Imaging and Health Informatics, vol. 9(3), pp. 602–609, 2019. doi: 10.1166/jmihi.2019.2570.
  • [13] Oh S.L., Hagiwara Y., Raghavendra U., Yuvaraj R., Arunkumar N., Murugappan M., Acharya U.R.: A deep learning approach for Parkinson’s disease diagnosis from EEG signals, Neural Computing and Applications, vol. 32, pp. 10927–10933, 2020. doi: 10.1007/s00521-018-3689-5.
  • [14] Polat K., Nour M.: Parkinson disease classification using one against all based data sampling with the acoustic features from the speech signals, Medical Hypotheses, vol. 140, 109678, 2020. doi: 10.1016/j.mehy.2020.109678.
  • [15] Shah S.A.A., Zhang L., Bais A.: Dynamical system based compact deep hybrid network for classification of Parkinson disease related EEG signals, Neural Networks, vol. 130, pp. 75–84, 2020. doi: 10.1016/j.neunet.2020.06.018.
  • [16] Shahid A.H., Singh M.P.: A deep learning approach for prediction of Parkinson’s disease progression, Biomedical Engineering Letters, vol. 10, pp. 227–239, 2020. doi: 10.1007/s13534-020-00156-7.
  • [17] Sharma P., Sundaram S., Sharma M., Sharma A., Gupta D.: Diagnosis of Parkinson’s disease using modified grey wolf optimization, Cognitive Systems Research, vol. 54, pp. 100–115, 2019. doi: 10.1016/j.cogsys.2018.12.002.
  • [18] Sivaranjini S., Sujatha C.: Deep learning based diagnosis of Parkinson’s disease using convolutional neural network, Multimedia Tools and Applications, vol. 79, pp. 15467–15479, 2020. doi: 10.1007/s11042-019-7469-8.
  • [19] Solana-Lavalle G., Gal´an-Hern´andez J.C., Rosas-Romero R.: Automatic Parkinson disease detection at early stages as a pre-diagnosis tool by using classifiers and a small set of vocal features, Biocybernetics and Biomedical Engineering, vol. 40(1), pp. 505–516, 2020. doi: 10.1016/j.bbe.2020.01.003.
  • [20] Soumaya Z., Taoufiq B.D., Benayad N., Yunus K., Abdelkrim A.: The detection of Parkinson disease using the genetic algorithm and SVM classifier, Applied Acoustics, vol. 171, 107528, 2021. doi: 10.1016/j.apacoust.2020.107528.
  • [21] V´asquez-Correa J.C., Arias-Vergara T., Orozco-Arroyave J.R., Eskofier B., Klucken J., N¨oth E.: Multimodal assessment of Parkinson’s disease: a deep learning approach, IEEE Journal of Biomedical and Health Informatics, vol. 23(4), pp. 1618–1630, 2018. doi: 10.1109/JBHI.2018.2866873.
  • [22] Wang W., Lee J., Harrou F., Sun Y.: Early detection of Parkinson’s disease using deep learning and machine learning, IEEE Access, vol. 8, pp. 147635–147646, 2020. doi: 10.1109/ACCESS.2020.3016062.
  • [23] Wingate J., Kollia I., Bidaut L., Kollias S.: Unified deep learning approach for prediction of Parkinson’s disease, IET Image Processing, vol. 14(10), pp. 1980–1989, 2020. doi: 10.1049/iet-ipr.2019.1526.
  • [24] Xia Y., Yao Z., Ye Q., Cheng N.: A dual-modal attention-enhanced deep learning network for quantification of Parkinson’s disease characteristics, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 28(1), pp. 42–51, 2019. doi: 10.1109/TNSRE.2019.2946194.
  • [25] Zhang T., Zhang Y., Sun H., Shan H.: Parkinson disease detection using energy direction features based on EMD from voice signal, Biocybernetics and Biomedical Engineering, vol. 41(1), pp. 127–141, 2021. doi: 10.1016/j.bbe.2020.12.009.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9303ddc8-6dc3-46ad-a8ad-8f0bca3c2857
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.