Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 172, nr 2 | 143--167
Tytuł artykułu

An Efficient Interpolation Approach for Exploring the Parameter Space of Regularized Tomography Algorithms

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Choosing a regularization parameter for tomographic reconstruction algorithms is often a cumbersome task of trial-and-error. Although several automatic and objective criteria have been proposed, each of them yields a different “optimal” value, which may or may not correspond to the actual implicit image quality metrics one would like to optimize for. Exploration of the space of regularization parameters is computationally expensive, as it requires many reconstructions to be computed. In this paper we propose an algorithmic approach for computationally efficient exploration of the regularization parameter space, based on a pixel-wise interpolation scheme. Once a relatively small number of reconstructions have been computed for a sparse sampling of the parameters, an approximation of the reconstructed image for other parameter values can be computed instantly, thereby allowing both manual and automated selection of the most preferable parameters based on a variety of image quality metrics. We demonstrate that for three common variational reconstruction methods, our approach results in accurate approximations of the reconstructed image and that it can be used in combination with existing approaches for choosing optimal regularization parameters.
Wydawca

Rocznik
Strony
143--167
Opis fizyczny
Bibliogr. 29 poz., rys., tab., wykr.
Twórcy
  • Computational Imaging group, Centrum voor Wiskunde en Informatica (CWI), Science Park 123, 1098 XG, Amsterdam, Netherlands, m.j.lagerwerf@cwi.nl
  • Computational Imaging group, Centrum voor Wiskunde en Informatica (CWI), Science Park 123, 1098 XG, Amsterdam, Netherlands
  • Computational Imaging group, Centrum voor Wiskunde en Informatica (CWI), Science Park 123, 1098 XG, Amsterdam, Netherlands
  • Computational Imaging group, Centrum voor Wiskunde en Informatica (CWI), Science Park 123, 1098 XG, Amsterdam, Netherlands
Bibliografia
  • [1] Natterer F. The mathematics of computerized tomography. SIAM, 2001. doi:10.1137/1.9780898719284.
  • [2] Fessler JA. Model-based image reconstruction for MRI. IEEE Signal Processing Magazine, 2010. 27(4):81-89. doi:10.1109/MSP.2010.936726.
  • [3] Midgley PA, Weyland M, Thomas JM, Johnson BF. Z-Contrast tomography: a technique in three-dimensional nanostructural analysis based on Rutherford scattering Electronic supplementary information (ESI) available: 3D animations of a Pd-Ru bimetallic catalyst generated from a tomographic reconstruction of HAADF STEM images. Chemical Communications, 2001. (10):907-908.
  • [4] Kak AC, Slaney M. Principles of computerized tomographic imaging. SIAM, 2001. doi:10.1137/1.9780898719277.
  • [5] Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D: Nonlinear Phenomena, 1992. 60(1-4):259-268. doi:10.1016/0167-2789(92)90242-f.
  • [6] Bredies K, Kunisch K, Pock T. Total generalized variation. SIAM Journal on Imaging Sciences, 2010. 3(3):492-526. URL https://doi.org/10.1137/090769521.
  • [7] Gockenbach M. Linear Inverse Problems and Tikhonov Regularization. 32. The Mathematical Association of America, 2016. ISBN-978-0-88385-141-8.
  • [8] Sidky EY, Jørgensen JH, Pan X. Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle-Pock algorithm. Physics in Medicine & Biology, 2012. 57(10):3065. doi:10.1088/0031-9155/57/10/3065.
  • [9] Sedlmair M, Heinzl C, Bruckner S, Piringer H, Möller T. Visual parameter space analysis: A conceptual framework. IEEE Transactions on Visualization and Computer Graphics, 2014. 20(12):2161-2170. doi:10.1109/TVCG.2014.2346321.
  • [10] Pretorius AJ, Bray MA, Carpenter AE, Ruddle RA. Visualization of parameter space for image analysis. IEEE Transactions on Visualization and Computer Graphics, 2011. 17(12):2402-2411. doi:10.1109/TVCG.2011.253.
  • [11] Scherzer O, Grasmair M, Grossauer H, Haltmeier M, Lenzen F. Variational methods in imaging. Springer, 2009. doi:10.1007/978-0-387-69277-7.
  • [12] Vainikko GM. The discrepancy principle for a class of regularization methods. USSR computational mathematics and mathematical physics, 1982. 22(3):1-19. URL https://doi.org/10.1016/0041-5553(82)90120-3.
  • [13] Burger M, Möller M, Benning M, Osher S. An adaptive inverse scale space method for compressed sensing. Mathematics of Computation, 2013. 82(281):269-299. doi:10.1090/S0025-5718-2012-02599-3.
  • [14] Burger M, Gilboa G, Moeller M, Eckardt L, Cremers D. Spectral decompositions using one-homogeneous functionals. SIAM Journal on Imaging Sciences, 2016. 9(3):1374-1408. URL https://doi.org/10.1137/15M1054687.
  • [15] Bringmann B, Cremers D, Krahmer F, Moeller M. The homotopy method revisited: Computing solution paths of l1-regularized problems. Mathematics of Computation, 2018. 87(313):2343-2364. doi:10.1090/mcom/3287.
  • [16] Blanchard G, Mathé P. Discrepancy principle for statistical inverse problems with application to conjugate gradient iteration. Inverse problems, 2012. 28(11):115011. doi:10.1088/0266-5611/28/11/115011.
  • [17] Hansen PC. Analysis of discrete ill-posed problems by means of the L-curve. SIAM review, 1992. 34(4):561-580. URL https://doi.org/10.1137/1034115.
  • [18] Hansen PC, OLeary DP. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM Journal on Scientific Computing, 1993. 14(6):1487-1503. doi:10.1137/0914086.
  • [19] Hansen PC. The L-curve and its use in the numerical treatment of inverse problems. 1999. ISSN-0909-6264.
  • [20] Van der Sluis A, van der Vorst HA. SIRT-and CG-type methods for the iterative solution of sparse linear least-squares problems. Linear Algebra and its Applications, 1990. 130:257-303. doi:10.1016/0024-3795(90)90215-x.
  • [21] Chambolle A, Pock T. A first-order primal-dual algorithm for convex problems with applications to imaging. Journal of mathematical imaging and vision, 2011. 40(1):120-145. doi:10.1007/s10851-010-0251-1.
  • [22] Walt Svd, Colbert SC, Varoquaux G. The NumPy array: a structure for efficient numerical computation. Computing in Science & Engineering, 2011. 13(2):22-30. doi:10.1109/mcse.2011.37.
  • [23] Jones E, Oliphant T, Peterson P, et al. SciPy: Open source scientific tools for Python, 2001-. [Online; accessed November 14, 2019], URL http://www.scipy.org/.
  • [24] Adler J, Kohr H, Öktem O. ODL 0.6.0, 2017. doi:10.5281/zenodo.556409.
  • [25] van Aarle W, Palenstijn WJ, Cant J, Janssens E, Bleichrodt F, Dabravolski A, De Beenhouwer J, Batenburg KJ, Sijbers J. Fast and flexible X-ray tomography using the ASTRA toolbox. Optics express, 2016. 24(22):25129-25147. doi:10.1364/oe.24.025129.
  • [26] Lagerwerf MJ. Pixel-wise interpolation for regularization parameter space exploration. https://github.com/MJLagerwerf/reg_param. [Accessed: 21-Dec-2018].
  • [27] Lauritsch G, Bruder H. FORBILD Head Phantom. http://www.imp.uni-erlangen.de/phantoms/head/head.html.
  • [28] Coban SB, Lagerwerf MJ, Batenburg KJ. High-resolution cone-beam scan of a pomegranates with two dosage levels, 2018. doi:10.5281/zenodo.1144086.
  • [29] Wang Z, Bovik AC, Sheikh HR, Simoncelli EP. Image quality assessment: from error visibility to structural similarity. IEEE transactions on image processing, 2004. 13(4):600-612. doi:10.1109/tip.2003.819861.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu
"Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja
sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-92fab0c6-0a6f-4bde-8bb3-b7e780bc0fde
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.