Czasopismo
2019
|
Vol. 164, nr 2-3
|
259--275
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In this paper, a new chaotic system is proposed, whose dynamical behaviors are discussed with the change of the parameters in detail. The specific effects of different parameters on the system are also discussed. By adjusting these parameters of the proposed circuit, this nonlinear circuit can produce the different dynamical behaviors, such as, hyper chaotic behavior, periodic behavior, transient behavior, etc. Furthermore, a novel kind of modified compound synchronization has been investigated, where the multiple chaotic systems have been considered for different combination modes: the compound system of four scaling drive systems and one response system. The corresponding controllers are designed to realize the modified compound synchronization. The theoretical proofs and numerical simulations are given to demonstrate the validity and applicability of the proposed chaotic system and the modified compound synchronization.
Czasopismo
Rocznik
Tom
Strony
259--275
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
autor
- Henan Key Lab of Information-Based Electrical Appliances, Zhengzhou University of Light Industry, Zhengzhou 450002, China, junweisun@yeah.net
autor
- Henan Key Lab of Information-Based Electrical Appliances, Zhengzhou University of Light Industry, Zhengzhou 450002, China, nanli@zzuli.edu.cn
autor
- Henan Key Lab of Information-Based Electrical Appliances, Zhengzhou University of Light Industry, Zhengzhou 450002, China, yanfengwang@yeah.net
autor
- Henan Key Lab of Information-Based Electrical Appliances, Zhengzhou University of Light Industry, Zhengzhou 450002, China, 18900616029@189.cn
Bibliografia
- [1] Pham VT, Jafari S, Wang X, Ma J. A chaotic system with different shapes of equilibria. International Journal of Bifurcation Chaos, 2016. 26 (04): 1650069. doi:10.1142/S0218127416500693.
- [2] Wei Z. Dynamical behaviors of a chaotic system with no equilibria. Physics Letters A, 2017. 376 (2):102-108. doi:10.1016/j.physleta.2011.10.040.
- [3] Kilic R, Dalkiran FY. Programmable design and implementation of a chaotic system utilizing multiple nonlinear functions. Turkish Journal of Electrical Engineering Computer Sciences, 2014. 18 (4): 647-655. doi:10.3906/elk-0909-212.
- [4] Shang ZS, Han YB, Wang RQ, Lei JW. Tracking and stabilization of chaotic system with static uncertain nonlinear functions. International Journal of Control Automation, 2016. 9 (1): 23-32. doi:10.14257/ijca.2016.9.1.03.
- [5] Huang YZ, Hu HP, Xie FL, Zheng J. An innovative electro-optical chaotic system using electrical mutual injection with nonlinear transmission function. IEEE Photonics Journal, 2017. 10 (1): 1-12. doi:10.1109/JPHOT.2017.2782841.
- [6] Can E, Sayan HH. A novel SSPWM controlling inverter running nonlinear device. Electrical Engineering, 2016. 1 : 1-8. doi:10.1109/PROC.1976.10092.
- [7] Yan LP, Zhao X, Zhao HJ, Huang K. Artificial neural network modeling of electromagnetic interference caused by nonlinear devices inside a metal enclosure. Journal of Electromagnetic Waves Applications, 2015. 29 (8): 992-1004. doi:10.1080/09205071.2015.1025915.
- [8] Li F, Yao CG. The infinite-scroll attractor and energy transition in chaotic circuit. Nonlinear Dynamics, 2016. 84 (4): 2305-2315. doi: 10.1007/s11071-016-2646-z.
- [9] Buscarino A, Fortuna L, Frasca M, Gambuzza L. A chaotic circuit based on Hewlett-packard memristor. Chaos, 2012. 22(023136):23-36. doi:10.1063/1.4729135.
- [10] Ignatov M, Hansen M, Ziegler M, Kohlstedta H. Synchronization of two memristively coupled Van der Pol oscillators. Applied Physics Letters, 2016. 108 (8): 268-276. doi: 10.1007/s11071-008-9385-8.
- [11] Vincent UE, Nbendjo BRN, Ajayi AA, Njah AN, Mcclintock PVE. Hyperchaos and bifurcations in a driven Van der Pol-duffing oscillator circuit. International Journal of Dynamics and Control. 2015. 3 (4):363-370. doi:10.1007/s40435-014-0118-1.
- [12] Matouk A E. Chaos, feedback control and synchronization of a fractional-order modified autonomous Van der Pol-duffing circuit. Communications in Nonlinear Science Numerical Simulation, 2011. 16 (2):975-986. doi:10.1016/j.cnsns.2010.04.027.
- [13] Li CH, Song Y, Wang FY, Wang ZQ. A bounded strategy of the mobile robot coverage path planning based on Lorenz chaotic system. International Journal of Advanced Robotic Systems, 2016, 13(3): 1. doi:10.5772/64115.
- [14] Rössler OE. An equation for continuous chaos. Physics Letters A, 1976. 57 (5): 397-398. doi:10.1016/0375-9601(76)90101-8.
- [15] Zhang FC, Liao XF, Mu CL, Zhang GG, Chen YA. On global boundedness of the Chen system. Discrete and Continuous Dynamical Systems - Series B, 2017. 22 (4): 1673-1681. doi: 10.3934/dcdsb.2017080.
- [16] Bi QS, Ma R, Zhang ZD. Bifurcation mechanism of the bursting oscillations in periodically excited dynamical system with two time scales. Nonlinear Dynamics, 2015. 79 (1): 101-110. doi:10.1007/s11071-014-1648-y.
- [17] Abdelhafez H, Nassar M. Effects of time delay on an active vibration control of a forced and self-excited nonlinear beam. Nonlinear Dynamics, 2016. 79 (1): 137-151. doi: 10.1007/s11071-016-2877-z.
- [18] Bao BC, Liu Z, Xu JP. Steady periodic memristor oscillator with transient chaotic behaviors. Electronics Letters, 2010. 46 (3): 237-238. doi: 10.1049/el.2010.3114.
- [19] Liu HJ, Kadir A, Li YL. Asymmetric color pathological image encryption scheme based on complex hyper chaotic system. Optik. 2016. 127 (15): 5812-5819. doi: 10.1016/j.ijleo.2016.04.014.
- [20] Tokida C, Saito T. On a synchronization phenomena in third order autonomous chaotic circuit. American Journal of Physics. 2012. 72 (5): 379-385. doi: 7735894dc039fd0296cb6b33f22146.
- [21] Chen HK. Global chaos synchronization of new chaotic systems via nonlinear control. Chaos, Solitons Fractals, 2005. 23 (4): 1245-1251. doi:10.1016/j.chaos.2004.06.040.
- [22] Wang ZL, Min FH, Wang ER. A new hyperchaotic circuit with two memristors and its application in image encryption. Aip Advances, 2016. 6 (9): 80-83. doi: 10.1063/1.4963743.
- [23] Li Y, Li CD. Complete synchronization of delayed chaotic neural networks by intermittent control with two switches in a control period. Neurocomputing, 2016. 173 (P3): 1341-1347. doi:10.1016/j.neucom.2015.09.007.
- [24] Jiang CM, Zhang FF, Li TX. Synchronization and antisynchronization of n-coupled fractional order complex chaotic systems with ring connection. Mathematical Methods in the Applied Sciences, 2018, 41. doi:org/10.1002/mma.4765.
- [25] Skardal P S, Sevillaescoboza R, Veravila V P, Buldú JM. Optimal phase synchronization in networks of phase-coherent chaotic oscillators. Chaos, 2017. 27 (1): 013111. doi: 10.1063/1.4974029.
- [26] Ahmadloua M, Adelib H. Visibility Graph Similarity: A new measure of generalized synchronization in coupled dynamic systems. Physica D: Nonlinear Phenomena, 2012. 241 (4): 326-332. doi:10.1016/j.physd.2011.09.008.
- [27] Li KZ, Zhao MC, Fu XC. Projective synchronization of driving-response systems and its application to secure communication. IEEE Transactions on Circuits and Systems I: Regular Papers. I, 2009. 56 (10):2280-2291. doi:10.1109/TCSI.2008.2012208.
- [28] Zhang S, Yu YG, Wen GG, Rahmani A. Lag-generalized synchronization of time-delay chaotic systems with stochastic perturbation. Modern Physics Letters B, 2016. 30 (01): 1550263. doi:10.1142/S0217984915502632.
- [29] Sun JW, Shen Y, Zhang GD, Xu CJ, Cui GZ. Combination-combination synchronization among four identical or different chaotic systems. Nonlinear Dynamics. 2013. 73(3): 1211-1222. doi: 10.1007/s11071-012-0620-y.
- [30] Sun JW, Shen Y, Yin Q, Xu CJ. Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos, 2013. 23 (1): 013140. doi: 10.1063/1.4794794.
- [31] Ye GD. Another Constructed chaotic image encryption scheme based on Toeplitz matrix and Hankel matrix. Fundamenta Informaticae. 2010. 101 (4): 321-333. doi: 10.3233/FI-2010-291.
- [32] Peng J, Zhang D, Liao XF. A digital image encryption algorithm based on hyper-chaotic cellular neural network. Fundamenta Informaticae. 2009. 90 (3): 269-282. doi: 10.3233/FI-2009-0018.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9284e4fe-3b4e-4845-8cf9-569a1c07db34