Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2019 | Vol. 39, no. 3 | 613--623
Tytuł artykułu

A deep learning model integrating SK-TPCNN and random forests for brain tumor segmentation in MRI

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The segmentation of brain tumors in magnetic resonance imaging (MRI) images plays an important role in early diagnosis, treatment planning and outcome evaluation. However, due to gliomas' significant diversity in structure, the segmentation accuracy is low. In this paper, an automatic segmentation method integrating the small kernels two-path convolu-tional neural network (SK-TPCNN) and random forests (RF) is proposed, the feature extrac-tion ability of SK-TPCNN and the joint optimization capability of model are presented respectively. The SK-TPCNN structure combining the small convolutional kernels and large convolutional kernels can enhance the nonlinear mapping ability and avoid over-fitting, the multiformity of features is also increased. The learned features from SK-TPCNN are then applied to the RF classifier to implement the joint optimization. RF classifier effectively integrates redundancy features and classify each MRI image voxel into normal brain tissues and different parts of tumor. The proposed algorithm is validated and evaluated in the Brain Tumor Segmentation Challenge (Brats) 2015 challenge Training dataset and the better performance is achieved.
Wydawca

Rocznik
Strony
613--623
Opis fizyczny
Bibliogr. 39 poz., rys., tab., wykr.
Twórcy
autor
  • College of Information Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
autor
  • College of Information Science and Technology, Henan University of Technology, No.100 LianHua Street, High-Tech Zone, Zhengzhou, Henan, China, 201692304@stu.haut.edu.cn
autor
  • College of Information Science and Technology, Henan University of Technology, Zhengzhou, Henan, China
Bibliografia
  • [1] Bauer S, Wiest R, Nolte LP, Reyes M. A survey of MRI-based medical image analysis for brain tumor studies. Phys Med Biol 2013;58(13):97–129.
  • [2] Meir EGV, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ. Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 2010;60(3):166–93.
  • [3] Goetz M, Weber C, Binczyk F, Polanska J, Tarnawski R, Bobek-Billewicz B, et al. DALSA: domain adaptation for supervised learning from sparsely annotated MR images. IEEE Trans Med Imaging 2016;35(1):184–96.
  • [4] Pinto A, Pereira S, Correia H, Oliveira J, Rasteiro MD, Carlos AS. Brain tumor segmentation based on extremely randomized forest with high-level features. Proc. 2015 37th Annual International Conference of the IEEE. 2015. pp. 3037–40.
  • [5] Gooya A, Pohl KM, Bilello M, Cirillo L, Biros G, Melhem ER, et al. GLISTR: glioma image segmentation and registration. IEEE Trans Med Imaging 2012;31(10):1941–54.
  • [6] Menze BH, Leemput KV, Lashkari D, Weber MA, Ayache N, Golland P. A generative model for brain tumor segmentation in multi-modal images. Proc. International Conference on Medical Image Computing and Computer- Assisted Intervention. 2010. pp. 151–9.
  • [7] Prastawa M, Bullitt E, Ho S, Gerig G. A brain tumor segmentation framework based on outlier detection. Med Image Anal 2004;8(3):275–83.
  • [8] Menze BH, Jakab A, Bauer S, Kalpathy CJ, Farahani K, Kirby J, et al. The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans Med Imaging 2015;34 (10):1993–2024.
  • [9] Bauer S, Nolte LP, Reyes M. Fully automatic segmentation of brain tumor images using support vector machine classification in combination with hierarchical conditional random field regularization. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2011. pp. 354–61.
  • [10] Zikic D, Glocker B, Konukoglu E, Criminisi A, Demiralp C, Shotton J, et al. Decision forests for tissue-specific segmentation of high-grade gliomas in multi-channel MR. Medical Image Computing and Computer-Assisted Intervention (MICCAI). 2012. pp. 369–76.
  • [11] Tustison NJ, Shrinidhi KL, Wintermark M, Durst CR, Kandel BM, Gee JC, et al. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (simplified) with ANTsR. Neuroinformatics 2015;13(2):209–25.
  • [12] Gotz M, Weber C, Blocher J, Stieltjes B, Meinzer HP, Maier-Hein K. Extremely randomized trees based brain tumor segmentation. Proc. MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS); 2014. p. 006-011.
  • [13] Tustison NJ, Shrinidhi KL, Wintermark M, Durst CR, Kandel BM, Gee JC, et al. Optimal symmetric multimodal templates and concatenated random forests for supervised brain tumor segmentation (Simplified) with ANTsR. Neuroinformatics 2015;13(2):209–25.
  • [14] Amiri S, Mahjoub MA, Rekik I. Bayesian network and structured random forest cooperative deep learning for automatic multi-label brain tumor segmentation. Proc. International Conference on Agents and Artificial Intelligence. 2018. pp. 183–90.
  • [15] Zikic D, Ioannou Y, Brown M, Criminisi A. Segmentation of brain tumor tissues with convolutional neural networks. Proc. MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS). 2014. pp. 36–9.
  • [16] Pereira S, Pinto A, Alves V, Silva CA. Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans Med Imaging 2016;35(5):1240–51.
  • [17] Havaei M, Davy A, Wardefarley D, Biard A, Courville A, Courville A, et al. Brain tumor segmentation with deep neural networks. Med Image Anal 2015;35:18–31.
  • [18] Hussain S, Anwar SM, Majid M. Segmentation of glioma tumors in brain using deep convolutional neural network. Neurocomputing 2018;282:248–61.
  • [19] Shen H, Wang R, Zhang J, Mckenna SJ. Boundary-aware fully convolutional network for brain tumor segmentation. Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2017. pp. 433–41.
  • [20] Iqbal S, Ghani MU, Saba T, Rehman A. Brain tumor segmentation in multi-spectral MRI using convolutional neural networks (CNN). Microsc Res Tech 2018;81(10):419–27.
  • [21] Pereira S, Alves V, Silva CA. Adaptive feature recombination and recalibration for semantic segmentation: application to brain tumor segmentation in MRI; 2018, arXiv:1806.02318.
  • [22] Kamnitsas K, Ledig C, Newcombe VF, Simpson JP, Kane AD, Menon DK, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal 2016;36:61–78.
  • [23] Zhao XM, Wu YH, Song GD, Li ZY, Zhang YZ, Fan Y. A deep learning model integrating FCNNs and CRFs for brain tumor segmentation. Med Image Anal 2017;43:98–111.
  • [24] Rao V, Sharifi M, Jaiswal A. Brain tumor segmentation with deep learning. Proc. MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS). 2015. pp. 56–9.
  • [25] Dong H, Yang G, Liu F, Mo Y, Guo Y. Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. Proc. Conference on Medical Image Understanding and Analysis. 2017. pp. 506–17.
  • [26] Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations; 2017, arXiv:1707. 03237V3.14.
  • [27] Xue Y, Xu T, Zhang H, Long R, Huang X. SegAN: adversarial network with multi-scale L1 loss for medical image segmentation. Neuroinformatics 2018;1–10.
  • [28] Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkeich PA, et al. N4ITK: improved n3 bias correction. IEEE Trans Med Imaging 2010;29(6):1310–20.
  • [29] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. Comput Sci 2014.
  • [30] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Proc. International Conference on Neural Information Processing Systems, vol. 60, no. 2. 2012. pp. 1097–105.
  • [31] Maas AL, Hannun AY, Ng AY. Rectifier nonlinearities improve neural network acoustic models. Proc. 30th International Conference on Machine Learning, vol. 30; 2013.
  • [32] Glorot X, Bengio Y. Understanding the difficulty of training deep feedforward neural networks. J Mach Learn Res 2010;9:249–56.
  • [33] Bai S, Li ZH, Hou JJ. Learning two-pathway convolutional neural networks for categorizing scene images. Multimed Tools Appl 2017;76(15):16145–62.
  • [34] Sun TC, Wang YL, Yang J. Convolution neural networks with two pathways for image style recognition. IEEE Trans Image Process 2017;26(9):4102–13.
  • [35] Wang MM. Multi-path convolutional neural networks for complex image classification; 2015.
  • [36] Pieter TB, Dirk PK, Shie M, Reuven YR. A tutorial on the cross-entropy method. Ann Oper Res 2005;134(1):19–67.
  • [37] Rubinstein RY. Optimization of computer simulation models with rare events. Eur J Oper Res 1997;99(1):89–112.
  • [38] Kingma DP, Ba J. Adam: a method for stochastic optimization. Comput Sci 2014.
  • [39] Lun TK, Hsu W. Brain tumor segmentation using deep convolutional neural network. Proc. MICCAI Multimodal Brain Tumor Segmentation Challenge (BraTS); 2016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-92818622-fcde-4922-9c6f-b03065bd1ee2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.