Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | Vol. 41, nr 1 | 18--23
Tytuł artykułu

Parameters of the electrophoretic deposition process and its influence on the morphology of hydroxyapatite coatings. Review

Warianty tytułu
PL
Parametry procesu osadzania elektroforetycznego i ich wpływ na strukturę powłok hydroksyapatytowych. Przegląd
Języki publikacji
EN
Abstrakty
EN
Metalic materials intended for bone implants should exhibit not only appropriate mechanical properties, but also high biocompatibility. The surface treatment modifications, for example acidic treatment, laser treatment, ion implantation and deposition of highly biocompatible coatings, are practiced. One of the most popular methods of surface modification is to deposit hydroxyapatite (HAp) coatings. HAp naturally occurs in human body, but can be also synthesized in laboratory conditions. Among diverse deposition techniques, electrophoretic deposition (EDP) is a cost-effective method in which charged particles, dispersed in an organic medium, after applying voltage migrate to the counter charged electrode forming a thin coating. There are several parameters that can be controlled during the process and that directly affect the morphology of the surface. The zeta potential and pH of prepared colloidal suspension are closely related to suspension stability and affect the susceptibility for agglomeration of the particles. Electrical settings, especially applied voltage, affect primarily the mass of deposition, but also the porosity of the coating, as well as its homogeneity. One of the basic parameters of EDP method is time of process. With increasing process time, the thickness of the deposited coating increases. Importantly, its mechanical properties also decrease. Moreover, the particles shape and size also affect the morphology of the deposited coating. The analysis of many variables is necessary to choose the right parameters to obtain the coating with desired morphology. In this paper, the influence of each parameter on the morphology of hydroxyapatite coatings is discussed.
PL
W artykule omówiono parametry procesu osadzania elektroforetycznego (EDP) ze szczególnym uwzględnieniem wykorzystania tej metody do osadzania powłok hydroksyapatytowych (HAp) na metalicznych implantach kostnych. Bazując na obszernym przeglądzie najnowszej literatury, przedstawiono wpływ każdego z parametrów na strukturę powstającej powłoki.
Wydawca

Rocznik
Strony
18--23
Opis fizyczny
Bibliogr. 57 poz., fig.
Twórcy
  • Gdansk University of Technology, Gdańsk
Bibliografia
  • [1] Rattan P.V., Sidhu T.S., Mittal M.: An overview of hydroxyapatite coated titanium implants. Asian Journal of Engineering and Applied Technology 1 (2012) 40-43.
  • [2] Ossowska A., Sobieszczyk S., Supernak-Marczewska M., Zielinski A.: Morphology and properties of nanotubular oxide layer on the ‘Ti-13Zr-13Nb’ alloy. Surface and Coatings Technology 258 (2014) 1238-1248.
  • [3] Lamolle S.F., Monjo M., Rubert M., Haugen H.J., Lyngstadaas S.P., Ellingsen J.E.: The effect of hydrofluoric acid treatment of titanium surface on nanostructural and chemical changes and the growth of MC3T3-E1 cells. Biomaterials 30/5 (2009) 736-742.
  • [4] Park J.W., Kim Y.J., Jang J.H., Kwon T.G., Bae Y., Suh J.Y.: Effects of phosphoric acid treatment of titanium surfaces on surface properties, osteoblast response and removal of torque forces. Acta Biomaterialia 6 (2009) 1661-1670.
  • [5] Dumas V.: Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomedical Materials 10 (2015) 55002.
  • [6] Akinlabi E.: Laser metal deposition of titanium alloy (Ti6Al4V). A Review. International Conference on Engineering, Science, and Industrial Applications, Tokyo, August 20th-24th (2019).
  • [7] Majkowska B., Jażdżewska M., Wołowiec-Korecka E., Piekoszewski W., Klimek L., Zielinski A.: The possibility of use of laser-modified Ti6Al4V alloy in friction pairs in endoprostheses. Archive of Metallurgy Materials 60 (2015) 755-758.
  • [8] Budzynski P., Sielanko J.: Long-range effect in ion-implanted titanium alloys. Acta Physica Polonica A 128 (2015) 841-844.
  • [9] Sreejith P.S., Yarlagadda P.: Cell attachment on ion implanted titanium surface. 9th Global Congress on Manufacturing and Management, Holiday Inn, November 12nd-14th (2008) 1-6.
  • [10] Jin G., Cao H., Qiao Y., Meng F., Zhu H., Liu X.: Osteogenic activity and antibacterial effect of zinc ion implanted titanium. Colloids Surfaces B Biointerfaces 117 (2014) 158-165.
  • [11] Khandan A., Karamian E., Ogbemudia D.: The evaluation of the wettability and surface characterization of titanium implant coated by electrophoretic deposition technique. 9th National Conference of Mechanical Engineering-NCME2017, Iran, (2017).
  • [12] Zhang Y.: Enhanced silver loaded antibacterial titanium implant coating with novel hierarchical effect. Journal of Biomaterials Applications 32 (2018) 885-888.
  • [13] Bae E.B.: Effect of titanium implants coated with radiation-crosslinked collagen on stability and osseointegration in rat tibia. Materials (Basel) 11 (2018) 2520-2525.
  • [14] Faig-Martí J., Gil F.J.: Hydroxyapatite coatings in prosthetic joints. Aquatic Botany 52 (2008) 113-120, Mar.
  • [15] Kalita V., Radyuk A., Komlev D., Ivannikov A., Komlev V., Demin K.: The boundary between the hydroxyapatite coating and titanium substrate. Inorganic Materials: Applied Research 8 (2017) 444-451.
  • [16] Bose S., Tarafder S., Bandyopadhyay A.: Hydroxyapatite coatings for metallic implants. Hydroxyapatite Biomedical Applications (2015) 143-157.
  • [17] Gomes D.S., Santos A.M.C., Neves G.A., Menezes R.R.: A brief review on hydroxyapatite production and use in biomedicine. Ceramica 65 (2019) 282-302.
  • [18] Ma G., Liu X.: Hydroxyapatite: Hexagonal or monoclinic. Crystal Growth & Design 9 (2009) 123-131.
  • [19] Yen S., Lin C.: Cathodic reactions of electrolytic hydoxyapatite coating on pure titanium. Materials Chemistry and Physics 77 (2013) 70-76.
  • [20] Zhang J., Guan R., Zhang X.: Synthesis and characterization of sol-gel hydroxyapatite coatings deposited on porous niti alloys. Journal of Alloys and Compounds 509 (2011) 4643-4648.
  • [21] Balamurugan A., Sanjeevi K., Rajeswari S.: Bioactive sol-gel hydroxyapatite surface for biomedical applications-in vitro study. Trends in Biomaterials and Artificial Organs 16 (2002) 157-162.
  • [22] Poinescu A., Radulescu C., Vasile B., Ionita I.: Research regarding sol-gel hydroxyapatite coating on 316L stainless steel. Revista de Chimie - Bucharest 65 (2014) 1245-1248.
  • [23] Zheng B., Luo Y., Liao H., Zhang C.: Investigation of the crystallinity of suspension plasma sprayed hydroxyapatite coatings. Journal of European Ceramics Society 37 (2017) 5017-5021.
  • [24] Xu H.: Deposition, nanostructure and phase composition of suspension plasma- -sprayed hydroxyapatite coatings. Ceramics International 42 (2016) 8684-8690.
  • [25] Ding S.J., Ju C.P., Lin J.H.C.: Microstructure and properties of magnetron-sputtered hydroxyapatite/titanium coatings. Chinese Journal of Medical and Biological Engineering 19, (1999) 59-66.
  • [26] Plūduma L., Ubele D., Piesins M., Gross K.: The influence of processing conditions on the structure of magnetron sputtered hydroxyapatite thin films. Key Engineering Materials 800 (2019) 14-18.
  • [27] Torrisi L., Baeri P., Foti A.M.: Characterization of pulsed laser deposited hydroxyapatite films. Biomaterials 8 (1992) 157-162.
  • [28] Bao Q., Chen C., Wang D., Liu J.: The influences of target properties and deposition times on pulsed laser deposited hydroxyapatite films. Applied Surface Science 255 (2008) 619-621.
  • [29] Choi J.M., Kim H., Lee I.: Ion-Beam-Assisted Deposition (IBAD) of hydroxyapatite coating layer on Ti-based metal substrate. Biomaterials 21 (2000) 469-473.
  • [30] Baptista R.: Characterization of titanium-hydroxyapatite biocomposites processed by dip coating. Bulletin of Materials Science 39 (2016) 263-272.
  • [31] Bartmański M., Cieślik B., Głodowska J., Kalka P., Pawłowski Ł., Pieper M., Zieliński A.: Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy. Ceramics Intermational 43 (2017) 11820-11829 [Dodaj do projektu Citavi wg ISBN] .
  • [32] Gopi D., Shinyjoy E., Kavitha L.: Influence of ionic substitution in improving the biological property of carbon nanotubes reinforced hydroxyapatite composite coating on titanium for orthopedic applications. Ceramics International (2015) 5454-5463.
  • [33] Liu D., Savino K., Yates M.: Coating of hydroxyapatite films on metal substrates by seeded hydrothermal deposition. Surface and Coatings Technologies 205 (2011) 3975÷3986.
  • [34] Ruffini A., Sprio S., Preti L., Tampieri A.: Synthesis of nanostructured hydroxyapatite via controlled hydrothermal route. Biomaterial-supported Tissue Reconstruction or Regeneration (2019) 1–22.
  • [35] Savino K., Yates M.: Thermal stability of electrochemical–hydrothermal hydroxyapatite coatings. Ceramics International 41 (2015) 8568÷8577.
  • [36] Mondragón-Cortez P., Vargas-GutiérrezG.: Electrophoretic deposition of hydroxyapatite submicron particles at high voltages. Materials Letters 58 (2004) 1336– 1339.
  • [37] Tadros T.: Zeta potential in colloid science. Principles and application. Colloids and Surfaces 5 (1982) 79–80.
  • [38] Xu R.: Progress in nanoparticles characterization: Sizing and zeta potential measurement. Particuology 6 (2008) 112–115.
  • [39] Wang W., Ding W., Xu Q., Wang J., Wang L., Lou X.: Zeta-potential data reliability of gold nanoparticle biomolecular conjugates and its application in sensitive quantification of surface absorbed protein. Colloids Surfaces B Biointerfaces 148 (2016) 541–548.
  • [40] Ahmadi M., Aghajani H.: Suspension characterization and electrophoretic deposition of Yttria-stabilized Zirconia nanoparticles on an iron-nickel based superalloy. Ceramics International 43 (2017) 7321–7328.
  • [41] Kumar A., Dixit C.K.: Methods for characterization of nanoparticles. Advances in Nanomedicine for the Delivery of Therapeutic Nucleic Acids (2017) 44–58.
  • [42] Bajpai P.: Electrokinetics in microfluidic. Interface Science and Technology (2004) 1361–1369.
  • [43] Dudek K.: Struktura i charakterystyka wielofunkcyjnych warstw powierzchniowych na stopie NiTi wykazującym efekt pamięci kształtu. PhD thesis, Chorzów (2017).
  • [44] Stoch A., Brozek A., Kmita G., Stoch J., Jastrz W., Rakowska A.: Electrophoretic coating of hydroxyapatite on titanium implants. Journal of Molecular Structure 596 (2001) 191–200.
  • [45] Javidi M., Javadpour S., Bahrololoom M.E., Ma J.: Electrophoretic deposition of natural hydroxyapatite. Key Engineering Materials 412 (2009) 183–188.
  • [46] Augello C., Liu H.: Surface modification of magnesium by functional polymer coatings for neural applications. Surf. Modif. Magnes. Its Alloy. Journal of Applied Biomedicine 2 (2015) 335–353.
  • [47] Tang G., Yan D., Yang C., Gong H., Chai J., Lam Y.: Joule heating and its effects on electroosmotic flow in microfluidic channels. Journal of Physics: Conference Series 34 (2006) 925–931.
  • [48] Maurer H.R.: Disc electrophoresis and related techniques of polyacrylamide gel electrophoresis. Archiv Der Pharmazie, Berlin (2011).
  • [49] Abdeltawab A., Shoeib M., Mohamed S.: Electrophoretic deposition of hydroxyapatite coatings on titanium from dimethylformamide suspensions. Surface Coatings and Technology 206 (2011) 43–48.
  • [50] Farnoush H., Mohandesi J.A., Fatmehsari D.H.: Effect of particle size on the electrophoretic deposition of hydroxyapatite coatings: A kinetic study based on a statistical analysis. International Journal of Applied Ceramics Technologies 10 (2013) 87–96.
  • [51] Zhitomirsky I., Petric A.: The electrodeposition of ceramics and organoceramic films for fuel cells. JOM 53 (2012) 48–50.
  • [52] Zhitomirsky I., Gal O.R.: Electrophoretic deposition of hydroxyapatite. Journal of Materials Science: Materials in Medicine 8 (1997) 213–219.
  • [53] Ma J., Wang C., Peng K.W.: Electrophoretic deposition of porous hydroxyapatite scaffold. Biomaterials 24 (2003) 3505–3510.
  • [54] Zhitomirsky I.: Electrophoretic and electrolytic deposition of ceramic coatings on carbon fibers. Journal of European Ceramics Society 18 (1998) 849–856.
  • [55] Drevet R., Ben Jaber N., Fauré J., Tara A., Ben Cheikh Larbi A., Benhayoune H.: Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V substrates. Surface Coatings and Technology 301 (2016) 94–99.
  • [56] Boccaccini A.R.: Electrophoretic deposition of biomaterials. Journal of the Royal Society Interface 7 (2010) 581–613.
  • [57] Kwok C.T., Wong P.K., Cheng F.T., Man H.C.: Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition. Applied Surface Science 255 (2009) 6736–6744.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9246ba8c-ce04-47b5-8a2b-0cd4b51d41c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.