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ABSTRACT: 

The problem of finding an equal-strength contour inside a viscoelastic rectangle according to the Kelvin-Voigt 

model is considered. It is assumed that constant normal compressive forces with given principal vectors act 

on the sides of the rectangle (or the values of constant normal displacements are known), and the inner 

boundary (the desired equal-strength contour) is free from external forces. The methods of the theory of 

conformal reflections, Cauchy type integral and boundary value problems of analytic functions are used to 

study the plate bending problems discussed in the paper. Which in turn are based on the task of constructing 

a conformally mapping function on a doubly linked circular ring bounded by broken line. The latter is reduced 

to the Riemann-Hilbert problem for a circular ring based on the solution of which it becomes possible to 

present the mentioned function in a defective form. It is worth noting that when considering mixed problems 

of plate bending for doubly connected areas bounded by broken line, it is possible to decompose them into 

two independent problems, each of which is a Riemann-Hilbert problem. 
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1. Introduction 

The problems of the theory of plate bending belong to one of the important problems of the 

theory of elasticity, and the relevance of their study is due to the numerous practical applications 

that the plates, as construction elements, have found in construction practice, as well as in ship-

building, machine building, aircraft construction, and others, whose mathematical foundations 

originate from the 20s of the 20th century. At the same time, it became the subject of research  

by many scientists, and this process continues today. 

Among the various methods that have been developed for the calculation of plates, one of  

the important place takes the complex analysis methods, such as conformal reflections and the 

theory of boundary value problems of analytic functions [1, 2], which are systematically used  

in both flat theory of elasticity and plate bending problems mainly relats to the names of Kolosov, 

Muskhelishvili [3] and theirs numerous followers and disciples [4-10]. 

Among them, the contribution of Georgian scientists is particularly noteworthy, in addition, 

the analogues who discovered between problems of flat theory of elasticity and plate bending  

(in both cases, we are dealing with boundary problems of biharmonic equations), allowed  

scientists to use the same approach to solve this problem. 
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From the point of view of practical application, one of the most important places is occupied 

by the problems of flat theory of elasticity and plate bending for two-link areas bounded by  

broken line [11, 12]. 

The most successful discovery in terms of efficient (analytical) construction of their solutions 

is the boundary conditions of analytic functions, in particular, the theory of Dirichlet and  

Riemann-Hilbert problems, which is essentially based on the issue of constructing a conformally 

mapping function on a circular ring of a given cut. If the simple link bounded by a polygon is  

a specific mapping function on a circle, the Christoffel-Schwartz formula is presented. 

For areas bounded by polygons, both in plane of elasticity and in plate bending problems,  

it is essential to determine the concentration of stresses in the vicinity of the corner vertices. 

which in turn is reflected in the vicinity of the hole in general, determining the stress concentra-

tion is one of the important tasks in the flat theory of elasticity and plate bending problems,  

and they are detailed in G. Savin’s famous monograph [13]. 

For the finite two-linked array studied by Bantsuri [1, 2, 9] and the solution of the tasks  

has put on the agenda such important issues of optimal design as reducing the stress concentra-

tion in the vicinity of the vertices of the planes and finding an equally strong contour inside the 

polygon. 

Non-adjustment of geometric and physical parameters in thin-walled structures leads to  

a significant concentration of stresses and creates dangerous zones of plastic deformation of 

cracks [14-23]. 

In scientific innovation, it is effectively constructed Kolosov-Mushkelishvili’s bonded complex 

broken lines, for both finite and infinite double-linked bonded areas in different cases of plate 

bending, leaned on jointed double-linked plate, which bends under a normal load of a certain 

intensity: a finite double-linked plate, the inner boundary of which is rigidly supported at the 

outer boundary on the defining sections. 

2. Problem 

Let � be a doubly connected region whose outer boundary is a rectangle ��, ��, ��, �� whose 

sides are parallel to the coordinate axes, and whose inner boundary is a smooth closed contour 

(an unknown part of the boundary of the region �). It is assumed that normally compressive 

stresses with known principal vectors act on the sides of the rectangle (or constant normal  

displacements are given ��(
) = const), and the inner part (the desired equal-strength contour) 

is free from extrenal forces. The equal strength of the desired contour lies in the fact that the 

tangential normal stress acting on it at each point of the contour takes the same value depend- 

ing only on time �, i.e. 
�(�, �) = ��(�). The viscoelasticity of the � region as understood by the  

Kelvin-Voight model. 

To solve the problem, methods of complex analysis are used (methods of the theory of con-

formal mappings and boundary value problems of analytic functions), and the equation of the 

desired contour is written in an analytical form. 

Similar problems of the plane theory of elasticity and plate bending are considered in  

[1, 2, 4-9]. 

3. Problem solution 

Let us present some results from [10] and [3]. In particular, the boundary conditions of the 

second main problem of the plane theory of viscoelasticity acording to the Kelvin-Voight model 

can be written in the form [10] 
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And the first boundary condition of the main problem has the form [3] 
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where: ; 
  ;$ ∪ ;K; ;$ 
 sX-$� ;X.$0, ;X.$0 – the sides of the rectangle, ;K – the boundary of the holes, 
and by � we will always mean the time parameter. 

Taking into account (4), condition (2) can be written in the form: 
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where T.�0 
 }�.Z0� . 

From (8) we obtain the Riemann-Hilbert boundary value problem: 

�Vv�{.�, �0 % �T.�0w 
 0,  � ∈ ;K; ��v�{.�, �0 % �T.�0w 
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Let the function � 
 3.�0 conformally map the domain � onto a circular ring � 
 {1 < |�| < �} 
and introduce the notation � 
 �K ∪ �$, where �K 
 {|�| 
 1} and �$ 
 {|�| 
 �} are line samples ;K and ;$ under the mapping � 
 3.�0. 
From (9) after mapping the area � to �, we obtain the Rienmann-Hilbert boundary value problem 
for the circular ring �. RevΓΦK.�, �0 % ΓT.�0w 
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Problem (10) has only a trivial solution, and thus to determine the function, Φ�(�, �) we obtain 

 Γ�Φ�(�, �) − �(�)� = 0 (11) 

It is easy to show that equation (11) has only a trivial solution and, thus for the function, Φ(�, �) 

we obtain the formula: 

 Φ(�, �) = �(�), � = � (12) 

Therefore, for the complex potential �(�, �), taking into account the equality �′(�, �) = �(�, �) we 

will have: 

 �(�, �) = � ⋅ �(�) (13) 

Taking into account the equality �� + �� = (� + ��)���(�), and taking into account (13), from (1) 

and (3) we obtain: 
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Boundary condition (14) after mapping the domain � onto E differentiating along the arc  

abscissa, taking into account the piecewise constancy of the right side of (14), can be written as: 

Re8�����HΩ(H, �): = 0,  H ∈ J); 
Im��HΩ(H, �)� = 0,  H ∈ J�. (15)

where  

 Ω(H, �) = Γ��(�)O′(H, �)� (16) 

Consider the function 

�(�) = Q1 − 1
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It is easy to show that �(�) we satisfy the condition: 

�(H) = HS�(H),   H ∈ J�;   �(H) = �(H), H ∈ J) 

And consequently, the boundary conditions (15) with respect to the function W(H, �) = Ω(X,.)
Y(X) ,  

can be written in the form: 

Re8�H����(X)W(H, �): = 0,  H ∈ J); 
Im��W(H, �)� = 0,  H ∈ J�. (18)

The solvability condition for problem (18) hass the form ∏ [\2
] ^�1

; = 1_45) , and the solution of  

this class problem itself h0 (for this class, see [3]) is represented by the formula: 

 W(�, �) = `(�) (19) 
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Where  
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(TK – real constant). 
Thus, from (16) and (19) we finally obtain: 

 ΓvT.�03′.�, �0w 
 q.�0 ⋅ 	.�0 (21) 

where q.�0 and 	.�0 are deifned by formulas (17) and (20), respectively. 
Thus, the definition of a conformally mapping function, and thus the definition of the equation 

of the desired equal-strength contour, is reduced to solving an equation of the Voltaire type (21). 
Introducing the notation 

 T.�03′.�, �0 
 Ω.�, �0 q.�0	.�0 
 ¤K.�0 (22) 

From (6) and (21) we obtain the equation 
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K Ω.�, �0 
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Differentiating (23) with respect to t and adding the resulting equality with (23) multiplied by m, 
we get: 
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From (24) by differentiation with respect to � we obtain a differential equation of the first kind 
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Where 
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 (in the expression Ω§ .�, �0 the dot means the derivative with respect to �). 
Based on the consideration that in the Kelvin-Voight model, the deformations (hence, the 
stresses) change exponentially, in the future we will assume that the function T.�0 has the form: 

 T.�0 
 �K.1 ( V,¨Z0 (27) 

where �K and � are positive constants. 
The solution of equation (25) has the form 

Ω.�, �0 
 V,¡Z ∙ ©Ω.�, z0 ( ¤.�0D ∙ .D¡Z % 10ª (28)

From (22) and (24) we have Ω.�, �0 
 T.z03′.�, z0 
 T¤.�0 and thus for the conformally  
mapping function, we finally obtain the formula: 

3′.�, �0 
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where y and ¤.�0 are defined by formula (26). 
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After determining �′(�, �) the equation of the desired contour, it will be written in the form  
 

��
′ =


��′(�, �)

|�′(�, �)|
, � ∈ ��, � ∈ ��. 

4. Conclusion 

The condition of equal strength of the desired contour is that the tangential normal stress on 

it takes a constant value. Note that the mentioned voltage is a function of point and time. To solve 

the problem, methods of the theory of conformal mappings and boundary value problems of  

analytic functions are used, and the equation of the desired equal-strength contour is constructed 

efficiently. 
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O problemie znalezienia konturu stałej wytrzymałości  
wewnątrz lepkosprężystego prostokąta  

STRESZCZENIE: 
Rozważono problem znalezienia konturu o stałej wytrzymałości wewnątrz lepkosprężystego prostokąta 
zgodnie z modelem Kelvina-Voigta. Zakłada się, że na boki prostokąta działają stałe normalne siły ściskające 
o danych wektorach głównych (lub znane są wartości stałych przemieszczeń normalnych), a wewnętrzna 
granica (żądany kontur o jednakowej wytrzymałości) jest wolna od sił zewnętrznych. Do badania omawia-
nych w artykule problemów zginania płyt wykorzystano metody teorii odbić konforemnych, zagadnienia 
całki typu Cauchy’ego i wartości brzegowych funkcji analitycznych, które z kolei opierają się na zadaniu  
skonstruowania funkcji odwzorowującej konformalnie na podwójnie połączonym pierścieniu kołowym  
ograniczonym linią przerywaną. To ostatnie sprowadza się do problemu Riemanna-Hilberta dla pierścienia 
kołowego na podstawie rozwiązania, które możliwe jest jako przedstawienie wspomnianej funkcji w postaci 
wadliwej. Warto zauważyć, że rozpatrując mieszane problemy zginania blachy dla obszarów podwójnie  
połączonych ograniczonych linią przerywaną, można je rozłożyć na dwa niezależne problemy, z których 
każdy jest problemem Riemanna-Hilberta. 
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