Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 72, nr 1 | art. no. e147926
Tytuł artykułu

Comparative study of experimental thermographic data and finite element analysis on temperature evolution of PET-G layer deposition during additive manufacturing process

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing (AM) technologies have been gaining popularity in recent years due to patent releases – and in effect – better accessibility of the technology. One of the most popular AM technologies is fused deposition modeling (FDM), which is used to manufacture products out of thermoplastic polymers in a layer-by-layer manner. Due to the specificity of the method, parts manufactured in this manner tend to have non-isotropic properties. One of the factors influencing the part’s mechanical behavior and quality is the thermoplastic material’s bonding mechanism correlated with the processing temperature, as well as thermal shrinkage during processing. In this research, the authors verified the suitability of finite element method (FEM) analysis for determining PET-G thermal evolution during the process, by creating a layer transient heat transfer model, and comparing the obtained modelling results with ones registered during a real-time process recorded with a FLIR T1020 thermal imaging camera. Our model is a valuable resource for providing thermal conditions in existing numerical models that connect heat transfer, mesostructure and AM product strength, especially when experimental data is lacking. The FE model presented reached a maximum sample-specific error of 11.3%, while the arithmetic mean percentage error for all samples and layer heights is equal to 4.3%, which the authors consider satisfactory. Model-to-experiment error is partially caused by glass transition of the material, which can be observed on the experimental cooling rate curve after processing the temperature signal.
Wydawca

Rocznik
Strony
art. no. e147926
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, Al. Adama Mickiewicza 30, 230-059 Kraków, Poland
  • Department of Manufacturing Systems, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, Al. Adama Mickiewicza 30, 230-059 Kraków, Poland, bembenek@agh.edu.pl
  • Department of Machine Design and Maintenance, Faculty of Mechanical Engineering and Robotics, AGH University of Krakow, Al. Adama Mickiewicza 30, 30-059 Kraków, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Al. Adama Mickiewicza 30, 30-059, Kraków, Poland
Bibliografia
  • [1] C.W. Hull, “Apparatus for production of three-dimensional objects by stereolithography,” U.S. Patent US4575330A, Mar. 11, 1986 Accessed: Jul. 14, 2022. [Online]. Available: https://patents.google.com/patent/US4575330A/en?inventor=charles+w.+hull&oq=charles+w.+hull&sort=old&page=1
  • [2] ISO/ASTM, “ISO/ASTM 52900:2015 Additive manufacturing – General principles – Fundamentals and vocabulary,” International Organization for Standardization ISO.
  • [3] S.A.M. Tofail, E.P. Koumoulos, A. Bandyopadhyay, S. Bose, L. O’Donoghue, and C. Charitidis, “Additive manufacturing: scientific and technological challenges, market uptake and opportunities,” Mater. Today, vol. 21, no. 1, pp. 22–37, Jan. 2018, doi: 10.1016/j.mattod.2017.07.001.
  • [4] R. Patel, C. Desai, S. Kushwah, and M.H. Mangrola, “A review article on FDM process parameters in 3D printing for composite materials,” Mater. Today Proc., vol. 60, pp. 2162–2166, Jan. 2022, doi: 10.1016/j.matpr.2022.02.385.
  • [5] A. Sharma and A. Rai, “Fused deposition modelling (FDM) based 3D & 4D Printing: A state of art review,” Mater. Today Proc., vol. 62, pp. 367–372, 2022, doi: 10.1016/j.matpr.2022.03.679.
  • [6] M. Bembenek, Ł. Kowalski, and A. Kosoń-Schab, “Research on the Influence of Processing Parameters on the Specific Tensile Strength of FDM Additive Manufactured PET-G and PLA Materials,” Polymers, vol. 14, no. 12, p. 2446, Jan. 2022, doi: 10.3390/polym14122446.
  • [7] Md. Qamar Tanveer, G. Mishra, S. Mishra, and R. Sharma, “Effect of infill pattern and infill density on mechanical behaviour of FDM 3D printed Parts – a current review,” Mater. Today Proc., vol. 62, pp. 100–108, Jan. 2022, doi: 10.1016/j.matpr.2022.02.310.
  • [8] S. Farashi and F. Vafaee, “Effect of printing parameters on the tensile strength of FDM 3D samples: a meta-analysis focusing on layer thickness and sample orientation,” Prog. Addit. Manuf., vol. 7, pp. 565–582, Jan. 2022, doi: 10.1007/s40964-021-00247-6.
  • [9] M. Bembenek, Ł. Kowalski, J. Pawlik, and S. Bajda, “Research on the Influence of the Load Direction and the Cross-Section Shape on the Young’s Modulus of Elements Produced by the Fused Deposition Modeling Method,” J. Mater. Eng. Perform., vol. 31, pp. 7906–7912, Apr. 2022, doi: 10.1007/s11665-022-06848-8.
  • [10] M.S. Amirruddin, K.I. Ismail, and T.C. Yap, “Effect of layer thickness and raster angle on the tribological behavior of 3D printed materials,” Mater. Today Proc., vol. 48, pp. 1821–1825, Jan. 2022, doi: 10.1016/j.matpr.2021.09.139.
  • [11] M.T. Birosz, D. Ledenyák, and M. Andó, “Effect of FDM infill patterns on mechanical properties,” Polym. Test., vol. 113, p. 107654, Sep. 2022, doi: 10.1016/j.polymertesting.2022.107654.
  • [12] J. Dobos, M.M. Hanon, and I. Oldal, “Effect of infill density and pattern on the specific load capacity of FDM 3D-printed PLA multi-layer sandwich,” J. Polym. Eng., vol. 42, no. 2, pp. 118–128, Feb. 2022, doi: 10.1515/polyeng-2021-0223.
  • [13] K.M. Agarwal, P. Shubham, D. Bhatia, P. Sharma, H. Vaid, and R. Vajpeyi, “Analyzing the Impact of Print Parameters on Dimensional Variation of ABS specimens printed using Fused Deposition Modelling (FDM),” Sens. Int., vol. 3, p. 100149, Jan. 2022, doi: 10.1016/j.sintl.2021.100149.
  • [14] M. Grasso, L. Azzouz, P. Ruiz-Hincapie, M. Zarrelli, and G. Ren, “Effect of temperature on the mechanical properties of 3D-printed PLA tensile specimens,” Rapid Prototyp. J., vol. 24, no. 8, pp. 1337–1346, Jan. 2018, doi: 10.1108/RPJ-04-2017-0055.
  • [15] D. Frunzaverde et al., “The Influence of the Printing Temperature and the Filament Color on the Dimensional Accuracy, Tensile Strength, and Friction Performance of FFF-Printed PLA Specimens,” Polymers, vol. 14, no. 10, p. 1978, Jan. 2022, doi: 10.3390/polym14101978.
  • [16] V. Cojocaru, D. Frunzaverde, C.-O. Miclosina, and G. Marginean, “The Influence of the Process Parameters on the Mechanical Properties of PLA Specimens Produced by Fused Filament Fabrication – A Review,” Polymers, vol. 14, no. 5, p. 886, Jan. 2022, doi: 10.3390/polym14050886.
  • [17] P.J. Lal Lazar, J. Subramanian, E. Natarajan, K. Markandan, and S. Ramesh, “Anisotropic structure-property relations of FDM printed short glass fiber reinforced polyamide TPMS structures under quasi-static compression,” Mater. Res. Technol-JMRT, vol. 24, pp. 9562–9579, May 2023, doi: 10.1016/j.jmrt.2023.05.167.
  • [18] J. Andrzejewski, M. Gronikowski, and J. Aniśko, “A Novel Manufacturing Concept of LCP Fiber-Reinforced GPET-Based Sandwich Structures with an FDM 3D-Printed Core,” Materials, vol. 15, no. 15, p. 5404, Jan. 2022, doi: 10.3390/ma15155405.
  • [19] N. Mostafa, H.M. Syed, S. Igor, and G. Andrew, “A Study of Melt Flow Analysis of an ABS-Iron Composite in Fused Deposition Modelling Process,” Tsinghua Sci. Technol., vol. 14, pp. 29–37, Jun. 2009, doi: 10.1016/S1007-0214(09)70063-X.
  • [20] S. Han and K.K. Wang, “Shrinkage Prediction for Slowly-Crystallizing Thermoplastic Polymers in Injection Molding,” Int. Polym. Process., vol. 12, no. 3, pp. 228–237, Sep. 1997, doi: 10.3139/217.970228.
  • [21] L. Benedetti, B. Brulé, N. Decreamer, K.E. Evans, and O. Ghita, “Shrinkage behaviour of semi-crystalline polymers in laser sintering: PEKK and PA12,” Mater. Des., vol. 181, p. 107906, Nov. 2019, doi: 10.1016/j.matdes.2019.107906.
  • [22] V.E. Kuznetsov, A.N. Solonin, A. Tavitov, O. Urzhumtsev, and A. Vakulik, “Increasing strength of FFF three-dimensional printed parts by influencing on temperature-related parameters of the process,” Rapid Prototyp. J., vol. 26, no. 1, pp. 107–121, Jan. 2020, doi: 10.1108/RPJ-01-2019-0017.
  • [23] T.E. Shelton, Z.A. Willburn, C.R. Hartsfield, G.R. Cobb, J.T. Cerri, and R.A. Kemnitz, “Effects of thermal process parameters on mechanical interlayer strength for additively manufactured Ultem 9085,” Polym. Test., vol. 81, p. 106255, Jan. 2020, doi: 10.1016/j.polymertesting.2019.106255.
  • [24] Q. Sun, G.M. Rizvi, C.T. Bellehumeur, and P. Gu, “Effect of processing conditions on the bonding quality of FDM polymer filaments,” Rapid Prototyp. J., vol. 14, no. 2, pp. 72–80, Mar. 2008, doi: 10.1108/13552540810862028.
  • [25] Y.-H. Choi, C.-M. Kim, H.-S. Jeong, and J.-H. Youn, “Influence of Bed Temperature on Heat Shrinkage Shape Error in FDM Additive Manufacturing of the ABS-Engineering Plastic,” World J. Eng. Technol., vol. 4, no. 3, pp. 186–192, Oct. 2016, doi: 10.4236/wjet.2016.43D022.
  • [26] M. Faes, E. Ferraris, and D. Moens, “Influence of Inter-layer Cooling time on the Quasi-static Properties of ABS Components Produced via Fused Deposition Modelling,” Procedia CIRP, vol. 42, pp. 748–753, Jan. 2016, doi: 10.1016/j.procir.2016.02.313.
  • [27] U.M. Dilberoglu, S. Simsek, and U. Yaman, “Shrinkage compensation approach proposed for ABS material in FDM process,” Mater. Manuf. Process., vol. 34, no. 9, pp. 993–998, Jul. 2019, doi: 10.1080/10426914.2019.1594252.
  • [28] U. Yaman, “Shrinkage compensation of holes via shrinkage of interior structure in FDM process,” Int. J. Adv. Manuf. Technol., vol. 94, no. 5–8, pp. 2187–2197, Feb. 2018, doi: 10.1007/s00170-017-1018-2.
  • [29] C. Benwood, A. Anstey, J. Andrzejewski, M. Misra, and A.K. Mohanty, “Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and Processing Correlationships during Fused Deposition Modeling (FDM) of Poly(Lactic Acid),” ACS Omega, vol. 3, no. 4, pp. 4400–4411, Apr. 2018, doi: 10.1021/acsomega.8b00129.
  • [30] C. Bellehumeur, L. Li, Q. Sun, and P. Gu, “Modeling of Bond Formation Between Polymer Filaments in the Fused Deposition Modeling Process,” J. Manuf. Process., vol. 6, no. 2, pp. 170–178, Jan. 2004, doi: 10.1016/S1526-6125(04)70071-7.
  • [31] S. Garzon-Hernandez, D. Garcia-Gonzalez, A. Jérusalem, and A. Arias, “Design of FDM 3D printed polymers: An experimental-modelling methodology for the prediction of mechanical properties,” Mater. Des., vol. 188, p. 108414, Mar. 2020, doi: 10.1016/j.matdes.2019.108414.
  • [32] A. Karimnejad, Z. Taheri, and A. Ramiar, “Predicting the neck size in the fused filament fabrication process,” Int. J. Adv. Manuf. Technol., vol. 126, pp. 67–86, 2023, doi: 10.1007/s00170-023-11039-3.
  • [33] M.E. Mackay, “The importance of rheological behavior in the additive manufacturing technique material extrusion,” Journal of Rheology, vol. 62, no. 6, pp. 1549–1561, Nov. 2018, doi: 10.1122/1.5037687.
  • [34] M.E. Mackay, Z.R. Swain, C.R. Banbury, D.D. Phan, and D.A. Edwards, “The performance of the hot end in a plasticating 3D printer,” J. Rheol., vol. 61, no. 2, p. 229, Jan. 2017, doi: 10.1122/1.4973852.
  • [35] C.A. Balaras and A.A. Argiriou, “Infrared thermography for building diagnostics,” Energy Build., vol. 34, no. 2, pp. 171–183, Feb. 2002, doi: 10.1016/S0378-7788(01)00105-0.
  • [36] J.H.L. Branco, R.L.L. Branco, T.C. Siqueira, L.C. de Souza, K.M.S. Dalago, and A. Andrade, “Clinical applicability of infrared thermography in rheumatic diseases: A systematic review,” J. Therm. Biol., vol. 104, p. 103172, Feb. 2022, doi: 10.1016/j.jtherbio.2021.103172.
  • [37] J. Molenda and A. Charchalis, “Using thermovision for temperature measurements during turning process,” J. KONES., vol. 25, no. 4, pp. 293–298, 2018, doi: 10.5604/01.3001.0012.4803.
  • [38] A. Uhryński and M. Bembenek, “The Thermographic Analysis of the Agglomeration Process in the Roller Press of Pillow-Shaped Briquettes,” Materials, vol. 15, no. 8, p. 2870, Jan. 2022, doi: 10.3390/ma15082870.
  • [39] J.E. Seppala and K.D. Migler, “Infrared thermography of welding zones produced by polymer extrusion additive manufacturing,” Addit. Manuf., vol. 12, pp. 71–76, Oct. 2016, doi: 10.1016/j.addma.2016.06.007.
  • [40] B.G. Compton, B.K. Post, C.E. Duty, L. Love, and V. Kunc, “Thermal analysis of additive manufacturing of large-scale thermoplastic polymer composites,” Addit. Manuf., vol. 17, pp. 77–86, Oct. 2017, doi: 10.1016/j.addma.2017.07.006.
  • [41] D.A. Boiko, V.A. Korabelnikova, E.G. Gordeev, and V.P. Ananikov, “Integration of thermal imaging and neural networks for mechanical strength analysis and fracture prediction in 3D-printed plastic parts,” Sci. Rep., vol. 12, no. 1, p. 8944, Dec. 2022, doi: 10.1038/s41598-022-12503-y.
  • [42] S.F. Costa, F.M. Duarte, and J.A. Covas, “Estimation of filament temperature and adhesion development in fused deposition techniques,” J. Mater. Process. Technol., vol. 245, pp. 167–179, Jul. 2017, doi: 10.1016/j.jmatprotec.2017.02.026.
  • [43] “EASY PETG – Filament PET – simple and pleasant 3D printing,” Fiberlogy. [Online]. Available: https://fiberlogy.com/en/fiberlogy-filaments/easy-pet-g/ (accessed Nov. 07, 2022).
  • [44] “Overview of materials for PETG Copolyester.” Matweb. [On-line]. Available: https://www.matweb.com/search/datasheet_print.aspx?matguid=4de1c85bb946406a86c52b688e3810d0 (accessed Nov. 07, 2022).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-92467aa3-a4ad-47a1-a88f-3a020bfaed07
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.