Warianty tytułu
Języki publikacji
Abstrakty
Objectives: In this paper series of experiments were carried out in order to check the influence of various sounds on human concentration during visually stimulated tasks performance. Methods: The obtained data was filtered. For the study purposes various smoothing filters were tested, including Median and Savitzky-Golay Filters; however, median filter only was applied. Implementation of this filter made the obtained data more legible and useful for potential diagnostics purposes. The tests were carried out with the implementation of the Emotiv Flex EEG headset. Results: The obtained results were promising and complied with the initial assumptions, which stated that the “relax”- phase, despite relaxing sounds stimuli, is strongly affected with the “focus”-phase with distracting sounds, which is clearly visible in the shape of the recorded EEG data. Conclusions: Further investigations with broader range of subjects is being currently carried out in order to confirm the already obtained results.
Czasopismo
Rocznik
Tom
Strony
79--93
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
autor
- Faculty of Electrical Engineering, Automatic Control and Informatics - Opole University of Technology, Opole, Poland, natalia.browarska@gmail.com
- Faculty of Electrical Engineering, Automatic Control and Informatics - Opole University of Technology, Opole, Poland, kawala84@gmail.com
autor
- Faculty of Electrical Engineering, Automatic Control and Informatics - Opole University of Technology, Opole, Poland
Bibliografia
- 1. Shih JJ, Krusienski DJ, Wolpaw JR. Brain-computer interfaces in medicine. In: Mayo clinic proceedings: Elsevier; 2012, vol. 87: 268-79.
- 2. Kawala-Janik A. Efficiency evaluation of external environments control using bio-signals. London, UK: University of Greenwich; 2013.
- 3. Stach T, Browarska N, Kawala-Janik A. Initial study on using emotiv EPOC+ neuroheadset as a control device for picture scriptbased communicators. IFAC-Papers OnLine 2018;51:180-4.
- 4. Koelsch S. Neural substrates of processing syntax and semantics in music. Music that works. Vienna: Springer; 2009:143-53 p.
- 5. Teixeira AR, Tomé A, Roseiro L, Gomes A. Does music help to be more attentive while performing a task? A brain activity analysis. In: 2018 IEEE international conference on bioinformatics and biomedicine (BIBM). IEEE, Madrid, Spain; 2018:1564-70 p.
- 6. Koelsch S, Siebel WA. Towards a neural basis of music perception. Trends Cognit Sci 2005;9:578-84.
- 7. Bitner MJ. Servicescapes: the impact of physical surroundings on customers and employees. J Market 1992;56:57-71.
- 8. Shih YN, Huang RH, Chiang Hs. Correlation between work concentration level and background music: a pilot study. Work 2009;33:329-33.
- 9. Kawala-Janik A, Pelc M, Podpora M. Method for EEG signals pattern recognition in embedded systems. Elektronika ir Elektrotechnika 2015;21:3-9.
- 10. Kawala-Sterniuk A, Podpora M, Pelc M, Blaszczyszyn M, Gorzelanczyk EJ, Martinek R, et al. Comparison of smoothing filters in analysis of EEG data for the medical diagnostics purposes. Sensors 2020;20:807.
- 11. Wierzgała P, Zapała D, Wojcik GM, Masiak J. Most popular signal processing methods in motor-imagery BCI: a review and metaanalysis. Front Neuroinf 2018;12:78.
- 12. Daly I, Malik A, Hwang F, Roesch E, Weaver J, Kirke A, et al. Neural correlates of emotional responses to music: an EEG study. Neurosci Lett 2014;573:52-7.
- 13. Geethanjali B, Adalarasu K, Rajsekaran R. Impact of music on brain function during mental task using electroencephalography. Int J Biomed Biol Eng 2012;6:256-60.
- 14. Teplan M, Krakovska A, Štolc S. EEG responses to long-term audio-visual stimulation. Int J Psychophysiol 2006;59:81-90.
- 15. Jirayucharoensak S, Pan-Ngum S, Israsena P. EEG-based emotion recognition using deep learn-ing network with principal component based covariate shift adaptation. Sci World J 2014;2014.
- 16. Emotiv. Emotiv flex website; 2020 https://www.emotiv.com/epoc-flex.
- 17. Chatrian G, Lettich E, Nelson P. Ten percent electrode system for topographic studies of spon-taneous and evoked EEG activities. Am J EEG Technol 1985;25:83-92.
- 18. Doppelmayr M, Weber E. Effects of SMR and theta/beta neurofeedback on reaction times, spatial abilities, and creativity. J Neurother 2011;15:115-29.
- 19. Zoefel B, Huster RJ, Herrmann CS. Neurofeedback training of the upper alpha frequency band in EEG improves cognitive performance. Neuroimage 2011;54:1427-31.
- 20. Lansbergen MM, Arns M, van Dongen-Boomsma M, Spronk D, Buitelaar JK. The increase in theta/beta ratio on resting-state EEG in boys with attention-deficit/hyperactivity disorder is mediated by slow alpha peak frequency. Prog Neuro Psychopharmacol Biol Psychiatr 2011;35:47-52.
- 21. Grzechca D, Szczeponik A. Comparison of filtering methods for enhanced reliability of a train axle counter system. Sensors 2020; 20:2754.
- 22. Sulaiman N, Taib MN, Aris SAM, Hamid NHA, Lias S, Murat ZH. Stress features identification from EEG signals using EEG asymmetry & spectral centroids techniques. In: 2010 IEEE EMBS conference on biomedical engineering and sciences (IECBES). IEEE, Kuala Lumpur, Malaysia; 2010:417-21 p.
- 23. Zheng WL, Zhu JY, Peng Y, Lu BL. EEG-based emotion classification using deep belief networks. In: 2014 IEEE international conference on multimedia and expo (ICME). IEEE, Chengdu, China; 2014:1-6 p.
- 24. Jena SK. Examination stress and its effect on EEG. Int J Med Sci Publ Health 2015;11:1493-7.
- 25. Seo SH, Lee JT, Crisan M. Stress and EEG. Converg Hybrid Inf Technol 2010;1:413-24.
- 26. Kim WS, Yoon YR, Kim KH, Jho MJ, Lee ST. Asymmetric activation in the prefrontal cortex by sound-induced affect. Percept Mot Skills 2003;97:847-54.
- 27. Zentner M, Grandjean D, Scherer KR. Emotions evoked by the sound of music: characterization, classification, and measurement. Emotion 2008;8:494.
- 28. Lin YP, Wang CH, Jung TP, Wu TL, Jeng SK, Duann JR, et al. EEG-based emotion recognition in music listening. IEEE (Inst Electr Electron Eng) Trans Biomed Eng 2010;57:1798-806.
- 29. Spezialetti M, Cinque L, Tavares JMR, Placidi G. Towards EEG-based BCI driven by emotions for addressing BCI-Illiteracy: a meta-analytic review. Behav Inf Technol 2018;37:855-71.
- 30. Jebelli H, Hwang S, Lee S. EEG-based workers’ stress recognition at construction sites. Autom ConStruct 2018;93:315-24.
- 31. Gorzelańczyk EJ, Podlipniak P, Walecki P, Karpiński M, Tarnowska E. Pitch syntax violations are linked to greater skin conductance changes, relative to timbral violations–the predictive role of the reward system in perspective of cortico–subcortical loops. Front Psychol 2017;8:586.
- 32. Jin J, Chen Z, Xu R, Miao Y, yu Wang X, Jung TP. Developing a novel tactile P300 brain-computer interface with a cheeks-stim paradigm. IEEE Trans Biomed Eng 2020:2585-93. https://doi.org/10.1109/TBME.2020.2965178.
- 33. Jin J, Li S, Daly I, Miao Y, Liu C, Wang X, et al. The study of generic model set for reducing calibration time in P300-based brain-computer interface. IEEE Trans Neural Syst Rehabil Eng 2019;28:3-12.
- 34. Yang W, Guo A, Li Y, Qiu J, Li S, Yin S, et al. Audio-visual spatiotemporal perceptual training enhances the P300 component in healthy older adults. Front Psychol 2018;9: 2537.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-921dea8d-ea87-44c3-a6f2-622f11f95c54