Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 31, No. 4 | 601--610
Tytuł artykułu

Study of magnetic properties of two samples from FeVO4-Co3V2O8 system

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two samples containing phases formed in the FeVO4–Co3V2O8 system were prepared by a conventional sintering method. The sample designated as H5 was one-phase with the howardevansite-type structure, while the sample designated as HL7 contained a mixture of H-type and lyonsite-type structures. The temperature dependence of the electron paramagnetic resonance (EPR) spectra and static magnetic susceptibility c was investigated in the temperature range from liquid helium to room temperature. Both the EPR spectra and the dc magnetic susceptibility showed anomalous behavior indicating that the magnetic competition process may be responsible. A comparison of the obtained results with previous studies on related compounds with the same structure, i.e. M3Fe4V6O24 (M = Mg(II), Zn(II), and Cu(II)) revealed that the observed anomaly shifted to lower temperatures on replacing the non-magnetic ions by magnetic Co(II) ions. The temperature dependence of the inverse susceptibility c􀀀1 indicates the existence of antiferromagnetic interactions between Fe(III) and Co(II) spins in sample H5. The obtained values of the Curie-Weiss temperatures are lower than for the Mn3Fe4V6O24 compound and comparable to compounds from M3Fe4V6O24 systems with M diamagnetic cations. The introduction of cobalt cations intensifies the magnetic frustration what is reflected in the temperature dependence of the magnetic susceptibility at low temperatures.
Wydawca

Rocznik
Strony
601--610
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
  • Department of Solid State Physics, Faculty of Physics, University of Athens, Panepistimiopolis, 15 784 Zografos, Athens, Greece
  • Institute of Physics, West Pomeranian University of Technology, Al. Piastow 48, 70-311 Szczecin, Poland
  • Institute of Physics, West Pomeranian University of Technology, Al. Piastow 48, 70-311 Szczecin, Poland
autor
  • Institute of Physics, West Pomeranian University of Technology, Al. Piastow 48, 70-311 Szczecin, Poland
autor
  • Institute of Physics, West Pomeranian University of Technology, Al. Piastow 48, 70-311 Szczecin, Poland
autor
  • Institute of Physics, West Pomeranian University of Technology, Al. Piastow 48, 70-311 Szczecin, Poland
  • Institute of Physics, West Pomeranian University of Technology, Al. Piastow 48, 70-311 Szczecin, Poland
  • Department of Inorganic and Analytical Chemistry, West Pomeranian University of Technology, Al. Piastow 42, 71-065 Szczecin, Poland
Bibliografia
  • [1] BLONSKA-TABERO A., KURZAWA M., J. Therm. Anal. Calorim., 88 (2007), 33.
  • [2] GUSKOS N., ZOLNIERKIEWICZ G., TYPEK J., BLONSKA-TABERO A., Physica B, 406 (2011), 2163.
  • [3] GUSKOS N. et al., J. Alloys Compd., 391 (2005), 20.
  • [4] BESKROVNYY A. et al., Rev. Adv. Mat. Sci., 12 (2006), 166.
  • [5] ZOLNIERKIEWICZ G., GUSKOS N., TYPEK J., BLONSKA-TABERO A., J. Non-Cryst. Solids, 352 (2006), 4362.
  • [6] HARDING W. D., KUNG H. H., KOZHEVNIKOV V. L., POEPPELMEIER K. R., J. Catal., 144 (1993), 597.
  • [7] LAFONTAINE M. A., GRENECHE J. M., LALIGANT Y., FEREY G., J. Solid State Chem., 108 (1994), 1.
  • [8] KORILI S. A., RUIZ S., DELMON B., Catal. Today, 32 (1996), 229.
  • [9] WANG X., VANDER GRIEND D. A., STERN C. L., POEPPELMEIR K. P., J. Alloys Compd., 298 (2000), 119.
  • [10] RYBARCZYK P. et al., J. Catal., 202 (2001), 45.
  • [11] BRIAND L. E., JEHNG J.-M., CORNAGLIA L., HIRT A. M., WACHS I. E., Catal. Today, 78 (2003), 257.
  • [12] GUSKOS N. et al., Rad. Effects & Def. in Solids, 158 (2003), 369.
  • [13] GUSKOS N. et al., J. Alloys Compd., 377 (2004), 47.
  • [14] LIKODIMOS V. et al., Eur. Phys. J. B., 38 (2004), 13.
  • [15] BEZKROVNYI et al., Mater. Sci.-Poland, 23 (2005), 883.
  • [16] GUSKOS N. et al., Mater. Sci.-Poland, 24 (2006), 985.
  • [17] GUSKOS N. et al., J. Appl. Phys., 101 (2007), 103922.
  • [18] GUSKOS N. et al., J. Non-Cryst. Solids, 355 (2009), 1419.
  • [19] ZOLNIERKIEWICZ G., GUSKOS N., TYPEK J., BLONSKA-TABERO A., Acta Phys. Pol. A, 109 (2006), 675.
  • [20] ZOLNIERKIEWICZ G., GUSKOS N., TYPEK J., ANAGNOSTAKIS E. A., BLONSKA-TABERO A., BOSACKA M., J. Alloys Compd., 471 (2009), 28.
  • [21] GUSKOS N. et al., J. Alloys Compd. 509 (2011), 8153.
  • [22] WANG X., VANDER GRIEND D.A., STERN C.L., POEPPELMEIER K.R., Inorg. Chem., 39 (2000), 136.
  • [23] GUSKOS N., LIKODIMOS V., TYPEK J., ZOLNIERKIEWICZ G., SZYMCZAK R., BLONSKA-TABERO A., J. Non-Cryst. Solids, 352 (2006), 4179.
  • [24] SCHIFFER P., DARUKA I., Phys. Rev. B, 56 (1997), 13712.
  • [25] MOESSNER R., BERLISNKY A. J., Phys. Rev. Lett., 83 (1999), 3293.
  • [26] KOKSHAROV Y.A. et al., Phys. Rev. B, 63 (2000), 012407.
  • [27] GUSKOS N. et al., J. Non-Cryst. Solids, 354 (2008), 4401.
  • [28] KLIAVA J., Electron Magnetic Resonance of Nanoparticles: Superparamagnetic Resonance, in Magnetic nanoparticles (Ed. Sergey P. Gubin),Wiley-VCH, 2009,p. 255.
  • [29] PILBROW J. R., Transition Ion Electron Paramagnetic Resonance; Clarendon Press: Oxford, 1990.
  • [30] GUSKOS N., GLENIS S., KARKAS K., ZOLNIERKIEWICZ G., BOSACKA M., Mater. Sci.-Poland, to be published.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9216929a-1c94-43bf-8577-b992f050f7db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.