Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 26, No. 3 | 242--246
Tytuł artykułu

Locally-induced permanent birefringence by polymer-stabilization of liquid crystal in cells and photonic crystal fibers

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to induce permanent birefringence both in typical liquid crystal cells and photonic crystal fibers (PCFs) by photo-polymerization. For this purpose three different liquid crystalline materials, namely E7, 5CB, and 6CHBT were combined with a mixture of RM257 monomer and a UV sensitive initiator with the percentage weight less than 10%. Due to the photo-polymerization process it was possible to achieve polymer-stabilized liquid crystal orientation inside LC cells and micro-sizedcylindrical glass tubes. In particular, periodic change in spatial molecular orientation was achieved by selective photo-polymerization. Successful results obtained in these simple geometries allowed for the experimental procedure to be repeated in PCFs leading to locally-induced permanent birefringence in PCFs.
Wydawca

Rocznik
Strony
242--246
Opis fizyczny
Bibliogr. 33 poz., il., wykr.
Twórcy
autor
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw, Poland
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw, Poland
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. Sylwestra Kaliskiego 2, Warsaw, Poland
  • Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. Sylwestra Kaliskiego 2, Warsaw, Poland
  • Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw, Poland
Bibliografia
  • [1] P. Russell, Photonic crystal fibers, Science 299 (5605) (2003) 358–362.
  • [2] J.C. Knight, Photonic crystal fibres, Nature 424 (6950) (2003) 847–851.
  • [3] K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, M. Fujita, Optical properties of a low-loss polarization-maintaining photonic crystal fiber, Opt. Express 9 (13) (2001) 676–680.
  • [4] D.Chen L. Shen, Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss, IEEE Photon. Technol. Lett. 19 (4) (2007) 185–187.
  • [5] J. Broeng, D. Mogilevstev, S.E. Barkou, A. Bjarklev, Photonic crystal fibers: a new class of optical waveguides, Opt. Fiber Technol. 5 (3) (1999) 305–330.
  • [6] A. Michie, J. Canning, K. Lyytikäinen, M. Åslund, i.J. Digweed, Temperature independent highly birefringent photonic crystal fibre, Opt. Express 12 (21) (2004) 5160.
  • [7] O. Frazao, J.M. Baptista, J.L. Santos, Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror, IEEE Sens. J. 7 (10) (2007) 1453–1455.
  • [8] C.-L. Zhao, X. Yang, C. Lu, W. Jin, M.S. Demokan, Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror, IEEE Photon. Technol. Lett. 16 (11) (2004) 2535–2537.
  • [9] H.P. Uranus, H. Hoekstra, E.W.C. van Groesen, Modes of an endlessly single-mode photonic crystal fiber: a finite element investigation, in: 9th Annual Symposium IEEE/LEOS Benelux, 2004, pp. 311–314.
  • [10] J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys. 78 (4) (2006) 1135–1184.
  • [11] J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, F. Salin, Extended single-mode photonic crystal fiber lasers, Opt. Express 14 (7) (2006) 2715.
  • [12] J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, et al., High-power air-clad large-mode-area photonic crystal fiber laser, Opt. Express 11 (7) (2003) 818–823.
  • [13] F. Benabid, J.C. Knight, G. Antonopoulos, P.S.J. Russell, Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber, Science 298 (5592) (2002) 399–402.
  • [14] Y.L. Hoo, W. Jin, C. Shi, H.L. Ho, D.N. Wang, S.C. Ruan, Design and modeling of a photonic crystal fiber gas sensor, Appl. Opt. 42 (18) (2003) 3509.
  • [15] F.M. Cox, A. Argyros, M.C.J. Large, Liquid-filled hollow core microstructured polymer optical fiber, Opt. Express 14 (9) (2006) 4135–4140.
  • [16] R. Zhang, J. Teipel, H. Giessen, Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation, Opt. Express 14 (15) (2006) 6800.
  • [17] C.R. Rosberg, F.H. Bennet, D.N. Neshev, P.D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, Y.S. Kivshar, Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers, Opt. Express 15 (19) (2007) 12145.
  • [18] J.-H. Liou, S.-S. Huang, C.-P. Yu, Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers, Opt. Commun. 283 (6) (2010) 971–974.
  • [19] D.K. Wu, B.T. Kuhlmey, B.J. Eggleton, Ultrasensitive photonic crystal fiber refractive index sensor, Opt. Lett. 34 (3) (2009) 322–324.
  • [20] J. Villatoro, M.P. Kreuzer, R. Jha, V.P. Minkovich, V. Finazzi, G. Badenes, V. Pruneri, Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity, Opt. Express 17 (3) (2009) 1447.
  • [21] G. Chesini, C.M.B. Cordeiro, C.J.S. de Matos, M. Fokine, I.C.S. Carvalho, J.C. Knight, All-fiber devices based on photonic crystal fibers with integrated electrodes, Opt. Express 17 (2009) 1660–1665.
  • [22] J. Xue, Sh. Li, Y. Xiao, W. Qin, X. Xin, X. Zhu, Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance, Opt. Express 21 (2013) 13733–13740.
  • [23] T. Woliński, S. Ertman, P. Lesiak, A. Domański, A. Czapla, R. Dąbrowski, E. Nowinowski-Kruszelnicki, J. Wójcik, Photonic liquid crystal fibers—a new challenge for fiber optics and liquid crystals photonics, Opto-Electron. Rev. 14 (2006) 4.
  • [24] S. Ertman, T.R. Woliński, D. Pysz, R. Buczyński, E. Nowinowski-Kruszelnicki, R. Dąbrowski, Tunable broadband in-fiber polarizer based on photonic liquid crystal fiber, Mol. Cryst. Liq. Cryst. 502 (1) (2009) 87–98.
  • [25] T.T. Larsen, A. Bjarklev, D.S. Hermann, J. Broeng, Optical devices based on liquid crystal photonic bandgap fibres, Opt. Express 11 (2003) 2589–2596.
  • [26] M.S. Chychłowski, S. Ertman, M.M. Tefelska, T.R. Woliński, E. Nowinowski-Kruszelnicki, O. Yaroshchuk, Photo-induced orientation of nematic liquid crystal in microcapillaries, Acta Phys. Polon. A 118 (2010) 1100–1103.
  • [27] M. Schadt, H. Seiberle, A. Schuster, S.M. Kelly, Photo-generation of linearly polymerized liquid crystal aligning layers comprising novel, integrated optically patterned retarders and color filters, Jpn. J. Appl. Phys. 34 (6R) (1995) 3240.
  • [28] I. Dierking, Polymer network–stabilized liquid crystals, Adv. Mater. 12 (2000) 167–181.
  • [29] J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, S.T. Wu, Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications, J. Mat. Chem. 21 (2011) 7870–7877.
  • [30] O. Chojnowska, R. Dąbrowski, J. Yan, Y. Chen, S.T. Wu, Electro-optical properties of photochemically stable polymer-stabilized blue-phase material, J. Appl. Phys. 116 (2014) 213505.
  • [31] Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.T. Wu, Electro-optics of polymer-stabilized blue phase liquid crystal displays, Appl. Phys. Lett. 94 (10) (2009) 101104.
  • [32] W.C. Brandt, L.F.J. Schneider, E. Frollini, L. Correr-Sobrinho, M.A.C. Sinhoreti, Effect of different photo-initiators and light curing units on degree of conversion of composites, Braz. Oral Res. 24 (3) (2010) 263–270.
  • [33] M.S. Chychłowski, S. Ertman, E. Nowinowski-Kruszelnicki, R. Dąbrowski, T.R. Woliński, Comparision of different liquid crystal materials under planar andhomeotropic boundary conditions in capillaries, Acta Phys. Polon. A120 (2011) 582–584.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-921329c0-f8fe-4558-91c2-a4ad23007586
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.