Warianty tytułu
Języki publikacji
Abstrakty
The aim of this work was to induce permanent birefringence both in typical liquid crystal cells and photonic crystal fibers (PCFs) by photo-polymerization. For this purpose three different liquid crystalline materials, namely E7, 5CB, and 6CHBT were combined with a mixture of RM257 monomer and a UV sensitive initiator with the percentage weight less than 10%. Due to the photo-polymerization process it was possible to achieve polymer-stabilized liquid crystal orientation inside LC cells and micro-sizedcylindrical glass tubes. In particular, periodic change in spatial molecular orientation was achieved by selective photo-polymerization. Successful results obtained in these simple geometries allowed for the experimental procedure to be repeated in PCFs leading to locally-induced permanent birefringence in PCFs.
Czasopismo
Rocznik
Tom
Strony
242--246
Opis fizyczny
Bibliogr. 33 poz., il., wykr.
Twórcy
autor
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw, Poland, milosz.chychlowski@pw.edu.pl
autor
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw, Poland
autor
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw, Poland
autor
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. Sylwestra Kaliskiego 2, Warsaw, Poland
autor
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, Gen. Sylwestra Kaliskiego 2, Warsaw, Poland
autor
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, Warsaw, Poland
Bibliografia
- [1] P. Russell, Photonic crystal fibers, Science 299 (5605) (2003) 358–362.
- [2] J.C. Knight, Photonic crystal fibres, Nature 424 (6950) (2003) 847–851.
- [3] K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, M. Fujita, Optical properties of a low-loss polarization-maintaining photonic crystal fiber, Opt. Express 9 (13) (2001) 676–680.
- [4] D.Chen L. Shen, Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss, IEEE Photon. Technol. Lett. 19 (4) (2007) 185–187.
- [5] J. Broeng, D. Mogilevstev, S.E. Barkou, A. Bjarklev, Photonic crystal fibers: a new class of optical waveguides, Opt. Fiber Technol. 5 (3) (1999) 305–330.
- [6] A. Michie, J. Canning, K. Lyytikäinen, M. Åslund, i.J. Digweed, Temperature independent highly birefringent photonic crystal fibre, Opt. Express 12 (21) (2004) 5160.
- [7] O. Frazao, J.M. Baptista, J.L. Santos, Temperature-independent strain sensor based on a Hi-Bi photonic crystal fiber loop mirror, IEEE Sens. J. 7 (10) (2007) 1453–1455.
- [8] C.-L. Zhao, X. Yang, C. Lu, W. Jin, M.S. Demokan, Temperature-insensitive interferometer using a highly birefringent photonic crystal fiber loop mirror, IEEE Photon. Technol. Lett. 16 (11) (2004) 2535–2537.
- [9] H.P. Uranus, H. Hoekstra, E.W.C. van Groesen, Modes of an endlessly single-mode photonic crystal fiber: a finite element investigation, in: 9th Annual Symposium IEEE/LEOS Benelux, 2004, pp. 311–314.
- [10] J.M. Dudley, G. Genty, S. Coen, Supercontinuum generation in photonic crystal fiber, Rev. Mod. Phys. 78 (4) (2006) 1135–1184.
- [11] J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, F. Salin, Extended single-mode photonic crystal fiber lasers, Opt. Express 14 (7) (2006) 2715.
- [12] J. Limpert, T. Schreiber, S. Nolte, H. Zellmer, T. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, et al., High-power air-clad large-mode-area photonic crystal fiber laser, Opt. Express 11 (7) (2003) 818–823.
- [13] F. Benabid, J.C. Knight, G. Antonopoulos, P.S.J. Russell, Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber, Science 298 (5592) (2002) 399–402.
- [14] Y.L. Hoo, W. Jin, C. Shi, H.L. Ho, D.N. Wang, S.C. Ruan, Design and modeling of a photonic crystal fiber gas sensor, Appl. Opt. 42 (18) (2003) 3509.
- [15] F.M. Cox, A. Argyros, M.C.J. Large, Liquid-filled hollow core microstructured polymer optical fiber, Opt. Express 14 (9) (2006) 4135–4140.
- [16] R. Zhang, J. Teipel, H. Giessen, Theoretical design of a liquid-core photonic crystal fiber for supercontinuum generation, Opt. Express 14 (15) (2006) 6800.
- [17] C.R. Rosberg, F.H. Bennet, D.N. Neshev, P.D. Rasmussen, O. Bang, W. Krolikowski, A. Bjarklev, Y.S. Kivshar, Tunable diffraction and self-defocusing in liquid-filled photonic crystal fibers, Opt. Express 15 (19) (2007) 12145.
- [18] J.-H. Liou, S.-S. Huang, C.-P. Yu, Loss-reduced highly birefringent selectively liquid-filled photonic crystal fibers, Opt. Commun. 283 (6) (2010) 971–974.
- [19] D.K. Wu, B.T. Kuhlmey, B.J. Eggleton, Ultrasensitive photonic crystal fiber refractive index sensor, Opt. Lett. 34 (3) (2009) 322–324.
- [20] J. Villatoro, M.P. Kreuzer, R. Jha, V.P. Minkovich, V. Finazzi, G. Badenes, V. Pruneri, Photonic crystal fiber interferometer for chemical vapor detection with high sensitivity, Opt. Express 17 (3) (2009) 1447.
- [21] G. Chesini, C.M.B. Cordeiro, C.J.S. de Matos, M. Fokine, I.C.S. Carvalho, J.C. Knight, All-fiber devices based on photonic crystal fibers with integrated electrodes, Opt. Express 17 (2009) 1660–1665.
- [22] J. Xue, Sh. Li, Y. Xiao, W. Qin, X. Xin, X. Zhu, Polarization filter characters of the gold-coated and the liquid filled photonic crystal fiber based on surface plasmon resonance, Opt. Express 21 (2013) 13733–13740.
- [23] T. Woliński, S. Ertman, P. Lesiak, A. Domański, A. Czapla, R. Dąbrowski, E. Nowinowski-Kruszelnicki, J. Wójcik, Photonic liquid crystal fibers—a new challenge for fiber optics and liquid crystals photonics, Opto-Electron. Rev. 14 (2006) 4.
- [24] S. Ertman, T.R. Woliński, D. Pysz, R. Buczyński, E. Nowinowski-Kruszelnicki, R. Dąbrowski, Tunable broadband in-fiber polarizer based on photonic liquid crystal fiber, Mol. Cryst. Liq. Cryst. 502 (1) (2009) 87–98.
- [25] T.T. Larsen, A. Bjarklev, D.S. Hermann, J. Broeng, Optical devices based on liquid crystal photonic bandgap fibres, Opt. Express 11 (2003) 2589–2596.
- [26] M.S. Chychłowski, S. Ertman, M.M. Tefelska, T.R. Woliński, E. Nowinowski-Kruszelnicki, O. Yaroshchuk, Photo-induced orientation of nematic liquid crystal in microcapillaries, Acta Phys. Polon. A 118 (2010) 1100–1103.
- [27] M. Schadt, H. Seiberle, A. Schuster, S.M. Kelly, Photo-generation of linearly polymerized liquid crystal aligning layers comprising novel, integrated optically patterned retarders and color filters, Jpn. J. Appl. Phys. 34 (6R) (1995) 3240.
- [28] I. Dierking, Polymer network–stabilized liquid crystals, Adv. Mater. 12 (2000) 167–181.
- [29] J. Yan, L. Rao, M. Jiao, Y. Li, H.-C. Cheng, S.T. Wu, Polymer-stabilized optically isotropic liquid crystals for next-generation display and photonics applications, J. Mat. Chem. 21 (2011) 7870–7877.
- [30] O. Chojnowska, R. Dąbrowski, J. Yan, Y. Chen, S.T. Wu, Electro-optical properties of photochemically stable polymer-stabilized blue-phase material, J. Appl. Phys. 116 (2014) 213505.
- [31] Z. Ge, S. Gauza, M. Jiao, H. Xianyu, S.T. Wu, Electro-optics of polymer-stabilized blue phase liquid crystal displays, Appl. Phys. Lett. 94 (10) (2009) 101104.
- [32] W.C. Brandt, L.F.J. Schneider, E. Frollini, L. Correr-Sobrinho, M.A.C. Sinhoreti, Effect of different photo-initiators and light curing units on degree of conversion of composites, Braz. Oral Res. 24 (3) (2010) 263–270.
- [33] M.S. Chychłowski, S. Ertman, E. Nowinowski-Kruszelnicki, R. Dąbrowski, T.R. Woliński, Comparision of different liquid crystal materials under planar andhomeotropic boundary conditions in capillaries, Acta Phys. Polon. A120 (2011) 582–584.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-921329c0-f8fe-4558-91c2-a4ad23007586