Warianty tytułu
Języki publikacji
Abstrakty
The circular economy (CE) aims to keep the maximum value of products and materials in a closed loop for longer periods, thus decoupling the use of natural resources from economic growth. Reverse logistics in the management of municipal biowaste falls within the scope of CE activities. This study compares the mass of bio-waste collected separately to the mass forecast at various administrative levels in Poland: country, voivodeship, cities with over 50 thousand inhabitants, and cities under 50 thousand inhabitants. Discrepancies were found between the collected mass of bio-waste and its predicted mass, which may be due to several reasons. Firstly, rural residents often use bio-waste for their own household needs. Additionally, in rural areas, due to the dispersion of buildings, the cost of obtaining the same amount of bio-waste is much higher compared to more urbanized areas. Processing bio-waste into organic fertilizer is a process that meets the assumptions of a circular economy and creates an environmentally friendly product. Unfortunately, in the case of Poland, there is no data on collected bio-waste earlier than 2019. There is also no information on the mass of biologically managed bio-waste at all administrative levels. Therefore, reporting on the management of municipal bio-waste at all administrative levels should be improved. The work also discusses the issue of collection and management of bio-waste, taking into account logistics processes.
Czasopismo
Rocznik
Tom
Strony
91--104
Opis fizyczny
Bibliogr. 77 poz.
Twórcy
autor
- Associate Prof., Institute of Agricultural Sciences, Environment Management and Protection, College of Natural Sciences, University of Rzeszów, Poland
autor
- Associate Prof., Institute of Agricultural Sciences, Environment Management and Protection, College of Natural Sciences, University of Rzeszów, Poland
autor
- PhD, Institute of Agricultural Sciences, Environment Management and Protection, College of Natural Sciences, University of Rzeszów, Poland, apodolak@ur.edu.pl
Bibliografia
- [1] Alamerew, Y. A., & Brissaud, D. (2020). Modelling reverse supply chain through system dynamics for realising the transition towards the circular economy: A case study on electric vehicle batteries. Journal of Cleaner Production, 254, 120025.
- [2] Landfill Directive 1999/31/EC of 26 April 1999 on the landfill of waste. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31999L0031 (access date: 10.06.2023).
- [3] Framework Directive on waste. Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on waste and repealing certain Directives. https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008L0098 (access date: 10.06.2023)
- [4] European Commission, Directorate-General for Communication, Circular economy action plan - For a cleaner and more competitive Europe, Publications Office of the European Union, 2020, https://data.europa.eu/doi/10.2779/05068(access date: 10.06.2023)
- [5] www.compostnetwork.info (access date: 10.06.2023) (the European Compost Network).
- [6] Central Statistical Office (CSO). Polska, Warszawa.
- [7] Eurostat.https://ec.europa.eu/eurostat/databrowser/view/env_wasmun/default/table?lang=en (access date: 28.02.2024).
- [8] Krajowy Plan Gospodarki Odpadami 2028 (M.P. 2023, poz. 702) (access date: 20.07.2023).
- [9] Jędrczak, A., Den Boer, E., Kamińska-Borak, J., Szpadt, R., Krzyśków, A., & Wielgosiński, G. (2020). Municipal waste management in Poland. Institute of Environmental Protection, National Research Institute.
- [10] Christel, W., Bruun, S., Magid, J., & Jensen, L. S. (2014). Phosphorus availability from the solid fraction of pig slurry is altered by composting or thermal treatment. Bioresource Technology, 169, 543-551.
- [11] Ciesielczuk, T., Rosik-Dulewska, C., Poluszyńska, J., Miłek, D., Szewczyk, A., & Sławińska, I. (2018). Acute toxicity of experimental fertilizers made of spent coffee grounds. Waste and Biomass Valorization, 9, 2157-2164.
- [12] Koc-Jurczyk, J. (2023). Selected Factors Affecting the Amount of Municipal Waste at Different Administrative Levels in Poland. Journal of Ecological Engineering, 24(6), 197-206.
- [13] BN-87/9103-04 Unieszkodliwianie odpadów miejskich - Metody oznaczania wskaźników nagromadzenia.
- [14] Rosik-Dulewska, Cz. (2023). Podstawy gospodarki odpadami. PWN, Warszawa.
- [15] Bargel, T., & Kaczor, G. (2006). Szacowana a rzeczywista ilość odpadów komunalnych w gminach wiejskich. Polska Akademia Nauk, Oddział w Krakowie. 5-14.
- [16] Van der Geer, J., Hanraads, J. A. J., & Lupton, R. A. (2010). The art of writing a scientific article. Journal of Science Communication, 163, 51-59.
- [17] Sepûlveda, J. M., Banguera, L., Fuertes, G., Carrasco, R., & Vargas, M. (2017). Reverse and inverse logistic models for solid waste management. South African Journal of Industrial Engineering, 28, 120-132.
- [18] Mahajan, J., & Vakharia, A. J. (2016). Waste Management: A Reverse Supply Chain Perspective. Vikalpa, 41, 197-208.
- [19] Turki, S., Sauvey, C., & Rezg, N. (2018). Modelling and optimization of a anufacturing/remanufacturing system with storage facility under carbon cap and trade policy. Journal of Cleaner Production, 193, 441-458.
- [20] Trochu, J., Chaabane, A., & Ouhimmou, M. (2018). Reverse logistics network redesign under uncertainty for wood waste in the CRD industry. Resources, Conservation and Recycling, 128, 32-47.
- [21] Mesjasz-Lech, A. (2019). Reverse logistics of municipal solid waste - Towards zero waste cities. Transportation Research Procedia, 39, 320-332.
- [22] Vittuari, M., Masotti, M., Iori, E., Falasconi, L., Toschi, T. G., & Segre, A. (2021). Does the COVID-19 external shock matter on household food waste? The impact of social distancing measures during the lockdown. Resources, Conservation and Recycling, 174, 105815.
- [23] Graham-Rowe, E., Jessop, D. C., & Sparks, P. (2015). Predicting household food waste reduction using an extended theory of planned behaviour. Resources, Conservation and Recycling, 101, 194-202.
- [24] Parizeau, K., Von Massow, M., & Martin, R. (2015). Household-level dynamics of food waste production and related beliefs, attitudes, and behaviours in Guelph, Ontario. Waste Management, 35, 207-217.
- [25] Setti, M., Banchelli, F., Falasconi, L., Segre, A., & Vittuari, M. (2018). Consumers’ food cycle and household waste. When behaviors matter. Journal of Cleaner Production, 185, 694-706.
- [26] Van Geffen, L., Van Herpen, E., & Van Trijp, H. (2016). Causes & determinants of consumers food waste. Eurefresh. 20, 26.
- [27] MacInnis, D. J., Moorman, C., & Jaworski, B. J. (1991). Enhancing and measuring consumers’ motivation, opportunity, and ability to process brand information from Ads. Journal of Marketing, 55, 32.
- [28] Rothschild, M. L. (1999). Carrots, sticks, and promises: a conceptual framework for the management of public health and social issue behaviors. Journal of Marketing Research, 63, 24.
- [29] Katajajuuri, J. M., Silvennoinen, K., Hartikainen, H., Jalkanen, L., Koivupuro, H. K., & Reinikainen, A. (2012). Food waste in the food chain and related climate impacts. 8th International Conference on Life Cycle Analysis, 1-4 October, Saint-Malo, France.
- [30] Stancu, V., Haugaard, P., & L ahteenm aki, L. (2016). Determinants of consumer food waste behaviour: two routes to food waste. Appetite, 96, 7-17.
- [31] Van Garde, S. J., & Woodburn, M. J. (1987). Food discard practices of householders. Journal of the American Dietetic Association, 87, 322-329.
- [32] Vittuari, M., Herrero, L.G., Masotti, M, Iori, E., Caldeira, C., Qian, Z., Bruns, H., Van Herpen, E., Obersteiner, G., Kaptan, G., Liu, G., Mikkelsen, B.E., Swannell, R., Kasza, G., Nohlen, H., & Sala, S. (2023). How to reduce consumer food waste at household level: A literature review on drivers and levers for behavioural change. Sustainable Production and Consumption, 38, 104-114.
- [33] Stenmarck, Â., Jensen, C., Quested, T., & Moates, G. (2016). Fusions: Estimates of European food waste levels. Technical Report.
- [34] Caldeira, C., De Laurentiis, V., Corrado, S., Van Holsteijn, F., & Sala S. (2019). Quantification of food waste per product group along the food supply chain in the European Union: a mass flow analysis. Resources, Conservation and Recycling, 149, 479-488.
- [35] Van Geffen, L., Van Herpen, E., Sijtsema, S., & Van Trijp, H. (2020). Food waste as the consequence of competing motivations, lack of opportunities, and insufficient abilities. Resources, Conservation and Recycling, 5, 100026.
- [36] Schanes, K., Dobernig, K., & Gozet, B. (2018). Food waste matters - A systematic review of household food waste practices and their policy implications. Journal of Cleaner Production, 182, 978-991.
- [37] Li, S., Kallas, Z., Rahmani, D., & Gil, J. M. (2021). Trends in food preferences and sustainable behavior during the COVID-19 lockdown: Evidence from spanish consumers. Foods, 10, 1898.
- [38] Roe, B. E., Bender, K., & Qi, D. (2021). The impact of COVID-19 on consumer food waste. Applied Economist Perspectives and Policy, 43(1), 401-411.
- [39] Amicarelli, V, & Bux, C. (2021). Food waste in Italian households during the Covid-19 pandemic: a selfreporting approach. Food Security, 13, 25-37.
- [40] Burlea-Schiopoiu, A., Ogarca, R. F., Barbu, C. M., Craciun, L., Baloi, I. C., & Miha, L. S. (2021). The impact of COVID-19 pandemic on food waste behaviour of young people. Journal of Cleaner Production, 294, 126333.
- [41] Berjan, S., Vasko, Ż., Hassen, T. B., El Bilali, H., Allahyari, M.,S., Tomić, V., & Radosavac, A. (2022). Assessment of household food waste management during the COVID-19 pandemic in Serbia: a crosssectional online survey. Environmental Science and Pollution Research, 29(8), 11130-11141.
- [42] Oniszk-Popławska, A., & Krasuska, E. (2013). Recykling organiczny i odzysk energii z segregowanych u źródła bioodpadów pochodzenia komunalnego przewodnik przedsiębiorcy: systemy zbiórki, magazynowania i logistyki odbioru.
- [43] European Union Regulation (EU) 2019/1009 of the European Parliament and of the Council of 5 June 2019 laying down rules on the making available on the market of EU fertilising products and amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009 and repealing Regulation (EC) No 2003/2003 https://eur-lex.europa.eu/legal-content/PL/TXT/?uri=CELEX%3A32019R1009 (access date: 10.06.2023).
- [44] Rozporządzenie Ministra Klimatu i Środowiska z dnia 28 grudnia 2022 r. w sprawie mechaniczno-biologicznego przetwarzania niesegregowanych (zmieszanych) odpadów komunalnych (Dz.U. 2023 poz. 56).
- [45] Chazirakis, P., Giannis, A., & Gidarakos, E. (2023). Material flow and environmental performance of the source segregated biowaste composting system. Waste Management, 160, 23-34.
- [46] Ardolino, F., Berto, C., & Arena, U. (2017). Environmental performances of different configurations of a material recovery facility in a life cycle perspective. Waste Management, 68, 662-676.
- [47] Martmez-Blanco, J., Colón, J., Gabarrell, X., Font, X., Sanchez, A., Artola, A., & Rieradevall, J. (2010). The use of life cycle assessment for the comparison of biowaste composting at home and full scale. Waste Management, 30, 983-994.
- [48] Do, Q., Ramudhin, A., Colicchia, C., Creazza, A., & Li, D. (2021). A systematic review of research on food loss and waste prevention and management for the circular economy. International Journal of Production Economics, 239, 108209.
- [49] Teigiserova, D. A., Hamelin, L., & Thomsen, M. (2020). Towards transparent valorization of food surplus, waste and loss: clarifying definitions, food waste hierarchy, and role in the circular economy. Science of the Total Environment, 706, 136033.
- [50] Genovese, A., Acquaye, A. A., Figueroa, A., & Koh, S. C. L. (2017). Sustainable supply chain management and the transition towards a circular economy: evidence and some applications. Omega, 66, 344-357.
- [51] Kourmentza, C., Economou, C. N., Tsafrakidou, P., & Kornaros, M. (2018). Spent coffee grounds make much more than waste: exploring recent advances and future exploitation strategies for the valorization of an emerging food waste stream. Journal of Cleaner Production, 172, 980-992.
- [52] Barreira, J. C. M., Arraibi, A. A., & Ferreira, I. C. F. R. (2019). Bioactive and functional compounds in apple pomace from juice and cider manufacturing: potential use in dermal formulations. Trends in Food Science and Technology, 90, 76-87.
- [53] Shogren, R., Wood, D., Orts, W., & Glenn, G. (2019). Plant-based materials and transitioning to a circular economy. Sustainable Production and Consumption, 19, 194-215.
- [54] Banerjee, S., Ranganathan, V., Patti, A., & Arora, A. (2018). Valorisation of pineapple wastes for food and therapeutic applications. Trends in Food Science and Technology, 82, 60-70.
- [55] Zabaniotou, A., & Kamaterou, P. (2019). Food waste valorization advocating Circular Bioeconomy - a critical review of potentialities and perspectives of spent coffee grounds biorefinery. Journal of Cleaner Production, 211, 1553-1566.
- [56] Ng, K. S., Yang, A., & Yakovleva, N. (2019). Sustainable waste management through synergistic utilisation of commercial and domestic organic waste for efficient resource recovery and valorisation in the UK. Journal of Cleaner Production, 227, 248-262.
- [57] Cristobal, J., Caldeira, C., Corrado, S., & Sala, S. (2018). Techno-economic and profitability analysis of food waste biorefineries at European level. Bioresource Technology, 259, 244-252.
- [58] Mirabella, N., Castellani, V, & Sala, S. (2014). Current options for the valorization of food manufacturing waste: a review. Journal of Cleaner Production, 65, 28-41.
- [59] Chang, I. S., Zhao, J., Yin, X., Wu, J., Jia, Z., & Wang, L. (2011). Comprehensive utilizations of biogas in Inner Mongolia, China. Renewable and Sustainable Energy Reviews, 15(3), 1442-1453.
- [60] Yeo, J., Chopra, S. S., Zhang, L., & An, A. K., (2019). Life cycle assessment (LCA) of food waste treatment in Hong Kong: On-site fermentation methodology. Journal of Environmental Management, 240, 343-351.
- [61] Cecchi, F., & Cavinato, C. (2019). Smart approaches to food waste final disposal. International Journal of Environmental Research and Public Health, 16(16), 2860.
- [62] Muradin, M., Joachimiak-Lechman, K., & Foltynowicz, Z. (2018). Evaluation of eco-efficiency of two alternative agricultural biogas plants. Applied Sciences, 8, 2083.
- [63] Elkhalifa, S., Al-Ansari, T., Mackey, H. R., & McKay, G. (2019). Food waste to biochars through pyrolysis: a review. Resources, Conservation and Recycling, 144, 310-320.
- [64] Ciuła, J., Wiewiórska, I., Banaś, M., Pająk, T., & Szewczyk, P. (2023). Balance and Energy Use of Biogas in Poland: Prospects and Directions of Development for the Circular Economy. Energies, 16, 3910.
- [65] Kokossis, A. C., & Koutinas, A. A. (2013). Food Waste as a Renewable Raw Material for the Development of Integrated Biorefineries: Current Status and Future Potential. In: Integrated Biorefineries: Design, Analysis, and Optimization, Stuart P.R., El-Halwagi M.M. (ed.) CRC Press.
- [66] Chojnacka, K., Moustakas, K., & Witek-Krowiak, A. (2020). Bio-based fertilizers: a practical approach towards circular economy. Bioresource Technology, 295, 122223.
- [67] Guilayn, F., Rouez, M., Crest, M., Patureau, D., & Jimenez, J. (2020). Valorization of digestates from urban or centralized biogas plants: a critical review. Reviews in Environmental Science and Bio/Technology, 19(2), 419-462.
- [68] Case, S. D. C., Oelofse, M., Hou, Y., Oenema, O., & Jensen, L. S. (2017). Farmer perceptions and use of organic waste products as fertilisers - a survey study of potential benefits and barriers. Agricultural Systems, 151, 84-95.
- [69] Choudhary, A. K., & Suri, V. K. (2018). Low-cost vermi-composting technology and its application in bio-conversion of obnoxious weed flora of northwestern himalayas into vermi-compost. Communication in Soil Science and Plant Analysis, 49(12), 1429-1441.
- [70] Sakarika, M., Spiller, M., Baetens, R., Donies, G., Vanderstuyf, J., Vinck, K., Vrancken, K. C., Van Barel, G., Du Bois, E., & Vlaeminck, S. E. (2019). Proof of concept of high-rate decentralized pre-composting of kitchen waste: optimizing design and operation of a novel drum reactor. Waste Management, 91, 20-32.
- [71] Beggio, G., Schievano, A., Bonato, T., Hennebert, P., & Pivato, A. (2019). Statistical analysis for the quality assessment of digestates from separately collected organic fraction of municipal solid waste (OFMSW) and agro-industrial feedstock. Should input feedstock to anaerobic digestion determine the legal status of digestate? Waste Management, 87, 546-558.
- [72] Barampouti, E. M., Mai, S., Malamis, D., Moustakas, K., & Loizidou, M. (2019). Liquid biofuels from the organic fraction of municipal solid waste: a review. Renewable and Sustainable Energy Reviews, 110, 298-314.
- [73] Weber, C. T., Trierweiler, L. E, & Trierweiler, J. O. (2020). Food waste biorefinery advocating circular economy: bioethanol and distilled beverage from sweet potato. Journal of Cleaner Production, 268, 121788.
- [74] Kiss, K., Ruszkai, C., & Takacs-Gyorgy, K. (2019). Examination of short supply chains based on circular economy and sustainability aspects. Resources, 8, 161.
- [75] Carillo, P., D’Amelia, L., Dell’Aversana, E., Faiella, D., Cacace, D., Giuliano, B., & Morrone, B. (2018). Eco-friendly use of tomato processing residues for lactic acid production in campania. Chemical Engineering Transactions, 64, 223-228.
- [76] Slorach, P. C., Jeswani, H. K., Cuellar-Franca, R., & Azapagic, A. (2019). Environmental sustainability of anaerobic digestion of household food waste. Journal of Environmental Management, 236, 798-814.
- [77] Vaneeckhaute, C., Styles, D., Prade, T., Adams, P., Thelin, G., Rodhe, L., Gunnarsson, I., & D’Hertefeldt, T. (2018). Closing nutrient loops through decentralized anaerobic digestion of organic residues in agricultural regions: a multi-dimensional sustainability assessment. Resources, Conservation and Recycling, 136, 110-117.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-912da0ea-8eb8-4273-ab5f-4d6be8d659dd