Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2008 | Vol. 28, Fasc. 2 | 179--202
Tytuł artykułu

Stability of two families of real-time queueing networks

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We study open multiclass queueing networks with renewal arrival streams and general service time distributions. Upon arrival to the network, customers from each class are assigned a random deadline drawn from a distribution associated with this class.We show that preemptive subcritical EDF networks with fixed customer routes are stable. We also prove that a broad class of (not necessarily subcritical) networks with reneging and Markovian routing, including EDF, FIFO, LIFO, SRPT, fixed priorities and processor sharing, is stable.
Wydawca

Rocznik
Strony
179--202
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
autor
  • Institute of Mathematics, Maria Curie-Skłodowska University, pl. Marii Curie-Skłodowskiej 1, 20-031 Lublin, Poland, lkruk@hektor.umcs.lublin.pl
Bibliografia
  • [1] F. Bacelli, P. Boyer and G. Hebuterne, Single server queues with impatient customers, Adv. in Appl. Probab. 16 (1984), pp. 887-905.
  • [2] P. Billingsley, Probability and Measure, 2nd edition, Wiley, New York 1986.
  • [3] M. Bramson, Instability of FIFO queueing networks, Ann. Appl. Probab. 4 (1994), pp. 414-431.
  • [4] M. Bramson, Instability of FIFO queueing networks with quick service times, Ann. Appl. Probab. 4 (1994), pp. 693-718.
  • [5] M. Bramson, Convergence to equilibria for fluid models of FIFO queueing networks, Queueing Syst. 22 (1996), pp. 5-45.
  • [6] M. Bramson, Convergence to equilibria for fluid models of head-of-the-line proportional processor sharing queueing networks, Queueing Syst. 23 (1996), pp. 1-26.
  • [7] M. Bramson, Stability of earliest-due-date, first-served queueing networks, Queueing Syst. 39 (2001), pp. 79-102.
  • [8] J. G. Dai, On positive Harris recurrence of multiclass queueing networks: a unified approach via fluid limit models, Ann. Appl. Probab. 5 (1995), pp. 49-77.
  • [9] J. G. Dai and G. Weiss, Stability and instability for fluid models of reentrant lines, Math. Oper. Res. 21 (1996), pp. 115-134.
  • [10] M. H. A. Davis, Piecewise-deterministic Markov processes: a general class of non-diffusion stochastic models, J. Roy. Statist. Soc. Ser. B 46 (1984), pp. 353-388.
  • [11] B. Doytchinov, J. P. Lehoczky and S. E. Shreve, Real-time queues in heavy traffic with earliest-deadline-first queue discipline, Ann. Appl. Probab. 11 (2001), pp. 332-379.
  • [12] R. K. Getoor, Transience and recurrence of Markov processes, in: Séminaire de Probabilités XIV, Lecture Notes in Math. No. 784, Springer, New York 1980, pp. 397-409.
  • [13] W. Hopp and M. Spearman, Factory Physics: Foundations of Manufacturing Management, Irwin, Chicago 1996.
  • [14] Ł. Kruk, J. P. Lehoczky, S. E. Shreve and S.-N. Yeung, Earliest-deadline-first service in heavy traffic acyclic networks, Ann. Appl. Probab. 14 (2004), pp. 1306-1352.
  • [15] R. Lillo and M. Mar tin, Stability in queues with impatient customers, Stoch. Models 17 (2001), pp. 375-389.
  • [16] S. P. Meyn and D. Down, Stability of generalized Jackson networks, Ann. Appl. Probab. 4 (1994), pp. 124-148.
  • [17] S. P. Meyn and R. J. Tweedie, Stability of Markovian processes III: Foster-Lyapunov criteria for continuous-time processes, Adv. in Appl. Probab. 25 (1993), pp. 518-548.
  • [18] S. P. Meyn and R. J. Tweedie, State-dependent criteria for convergence of Markov chains, Ann. Appl. Probab. 4 (1994), pp. 149-168.
  • [19] A. N. Rybko and A. L. Stolyar, Ergodicity of stochastic processes describing the operations of open queueing networks, Probl. Inf. Transm. 28 (1992), pp. 199-220.
  • [20] R. E. Stanford, Reneging phenomena in single channel queues, Math. Oper. Res. 4 (1979), pp. 162-178.
  • [21] J. A. Stankovic, M. Spuri, K. Ramamritham and G. C. Buttazzo, Deadline Scheduling for Real-Time Systems, Springer, 1998.
  • [22] A. R. Ward and N. Bambos, On stability of queueing networks with job deadlines, J. Appl. Probab. 40 (2003), pp. 293-304.
  • [23] S.-N. Yeung and J. P. Lehoczky, Real-time queueing networks in heavy traffic with EDF and FIFO queue discipline, working paper, 2001, Department of Statistics, Carnegie Mellon University.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9125bda8-adc4-41ed-a67c-26429c1abfa7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.