Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2021 | Vol. 69, iss. 4 | 403--421
Tytuł artykułu

Correlation analysis between tool wear, roughness and cutting vibration in turning of hardened steel

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Hard machining is a process that has become highly recommended for replacing grinding in the manufacturing industry. This is due to its ability to machine complex shapes with reduced production costs by reducing the machining time and being an ecological process. Three technological parameters determine the quality and productivity generated from this process: cutting vibration, surface roughness and tool wear. Therefore, the analysis of the correlation between them is very important. In the present investigation, the analysis of the correlation between cutting vibration, surface roughness and tool wear during a dry machining of hardened steel with a mixed ceramic tool is conducted in order to control these parameters online. This analysis is validated by developing predictive mathematical models. To neutralize the effect of cutting parameters, a combination of parameters such as cutting speed, feed rate and depth of cut to be used in the experimental tests is selected from the literature based on a quality-productivity optimum performance. In the early stage, the effect of machining time on the three technological parameters is studied, then assessed by developing predictive mathematical models. In the second stage, an experimental and statistical analyses such as the Pearson and Spearman correlation methods are employed to determine correlations between tool wear, surface roughness and cutting vibration. Each parameter is compared with the other two. The models and their validations are developed using the Minitab 16 tool, and the predictions are obtained with desirable deviations. The examination of the outcomes from the first stage reveals that the machining time has a significant effect on the three parameters. The regression models are found to be satisfactory in predicting each technological parameter. In the second stage, the results show a strong correlation between tool wear and cutting vibration, confirmed by the high Pearson and Spearman coefficients. The correlations between surface roughness and tool wear or the cutting vibration are strong only when the flank wear Vb is inferior 0.3 mm (which is required by the ISO standard). The regression models are developed with a desirable coefficient of regression (R2). The novelty of this work lies in the fact that we consider the cutting vibration as a response generated the during cutting process and not as a variable affecting the other technological parameters. This was rarely studied in previous researches.
Wydawca

Rocznik
Strony
403--421
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
  • Electrical Engineering Department, Freres Mentouri Constantin 1 University P.O Box 325, 25017 Constantine, Algeria , abidiyoucef73@gmail.com
  • LRTAPM, Badji Mokhtar University P.O Box 12, 23000 Annaba, Algeria
  • LRTAPM, Badji Mokhtar University P.O Box 12, 23000 Annaba, Algeria
Bibliografia
  • 1. Huang Y., Chou Y.K., Liang S.Y., CBN tool wear in hard turning: A survey on research progresses, The International Journal of Advanced Manufacturing Technology, 35: 443–453, 2007, doi: 10.1007/s00170-006-0737-6.
  • 2. M’Saoubi R., Outeiro J.C., Chandrasekaran H., Dillon Jr. O.W., Jawahir I.S., A review of surface integrity in machining and its impact on functional performance and life of machined products, International Journal of Sustainable Manufacturing, 1(1–2): 203–236, 2008, doi: 10.1504/IJSM.2008.019234.
  • 3. Govindan P., Vipindas M.P., Surface quality optimization in turning operations using Taguchi method – A review, International Journal of Mechanical Engeneering and Robotics Research, 3(1): 89–118, 2014, http://www.ijmerr.com/v3n1/ijmerr v3n1 11.pdf.
  • 4. Chinchanikar S., Choudhury S.K., Machining of hardened steel – Experimental investigations, performance modeling and cooling techniques: A review, International Journal of Machine Tools & Manufacture, 89: 95–109, 2015, doi: 10.1016/j.ijmachtools.2014.11.002.
  • 5. Benga G.C., Abrao A.M., Turning of hardened 100Cr6 bearing steel with ceramic and PCBN cutting tools, Journal of Materials Processing Technology, 143–144: 237–241, 2003, doi: 10.1016/S0924-0136(03)00346-7.
  • 6. Attanasio A., Umbrello D., Cappellini C., Rotella G., M’Saoubi R., Tool wear effects on white and dark layer formation in hard turning of AISI 52100 steel, Wear, 286–287: 98–107, 2012, doi: 10.1016/j.wear.2011.07.001.
  • 7. Motorcu A.R, Tool life performances, wear mechanisms and surface roughness characteristics when turning austenised and quenched AISI 52100 bearing steel with ceramics and CBN/TIC cutting tools, Indian Journal of Engineering & Materials Science, 18(2): 137–146, 2011, http://nopr.niscair.res.in/handle/123456789/11682.
  • 8. Fnides B., Boutabba S., Fnides M., Aouici H., Yallese M.A., Tool life evaluation of cutting materials in hard turning of AISI H11, Estonian Journal of Engineering, 19(2): 143–151, 2013, doi: 10.3176/eng.2013.2.04.
  • 9. Varaprasad B.H., Srinivasa R.C., Vinay P.V., Effect of machining parameters on tool wear in hard turning of AISI D3 steel, Procedia Engineering, 97: 338–345, 2014, doi: 10.1016/j.proeng.2014.12.257.
  • 10. Gaitonde V.N., Karnik S.R., Figueira L., Davim J.P., Machinability investigations in hard turning of AISI D2 cold work tool steel with conventional and wiper ceramic inserts, International Journal of Refractory and Hard Materials, 27(4): 754–763, 2009, doi: 10.1016/j.ijrmhm.2008.12.007.
  • 11. Shihab S.K., Khan Z.A., Mohammad A., Siddiquee A.N., A review of turning of hard steels used in bearing and automotive applications, Production & Manufacturing Research, 2(1): 24–49, 2014, doi: 10.1080/21693277.2014.881728.
  • 12. De Godoy V.A.A., Diniz A.E., Turning of interrupted and continuous hardened steel surfaces using ceramic and CBN cutting tools, Journal of Materials Processing Technology, 211(6): 1014-1025, 2011, doi: 10.1016/j.jmatprotec.2011.01.002.
  • 13. Kumar C.S., Patel S.K., Experimental and numerical investigations on the effect of varying AlTiN coating thickness on hard machining performance of Al2O3-TiCN mixed ceramic inserts, Surface and Coatings Technology, 309: 266–281, 2017, doi: 10.1016/j.surfcoat.2016.11.080.
  • 14. Hosseini S.B., Ryttberg K., Kaminski J., Klement U., Characterization of the surface integrity induced by hard turning of bainitic and martensitic AISI 52100 steel, Procedia CIRP, 1: 494–499, 2012, doi: 10.1016/j.procir.2012.04.088.
  • 15. Okada M., Hosokawa A., Tanaka R., Ueda T., Cutting performance of PVD-coated carbide and CBN tools in hardmilling, International Journal of Machine Tools and Manufacture, 51(2): 127–132, 2011, doi: 10.1016/j.ijmachtools.2010.10.007.
  • 16. Yallesse M.A., Boulanouar L., Belhadi S., Investigation de l’usure de deux mat´eriaux `a outils `a base d’alumine SiCw et de CBN-TiCN lors de l’usinage d’un acier`a roulements 60HRC, Sciences & Technologie B, 20: 92–99, 2003, http://revue.umc.edu.dz/ index.php/b/article/view/1264.
  • 17. Sahoo A.K., Sahoon B., Experimental investigations on machinability aspects in finish hard turning of AISI 4340 steel using uncoated and multilayer coated carbide inserts, Measurement, 45(8): 2153–2165, 2012, doi: 10.1016/j.measurement.2012.05.015.
  • 18. Abidi Y., Boulanouar L., Amirat A., Experimental study on wear of mixed ceramic tool and correlation analysis between surface roughness and cutting tool radial vibrations during hard turning of AISI 52100 steel, Journal of Engineering Science and Technology, 13(4): 943–963, 2018, http://jestec.taylors.edu.my/Vol%2013%20issue% 204%20April%202018/13 4 8.pdf.
  • 19. Sidik N.A.C., Samion S., Ghaderian J., Afiq M.N., Yazid W.M., Recent progress on the application of nanofluids in minimum quantity lubrication machining: A review, International Journal of Heat and Mass Transfer, 108(Part A): 79–89, 2017, doi: 10.1016/j.ijheatmasstransfer.2016.11.105.
  • 20. Benardos P.G., Vosniakos G.C., Predicting surface roughness in machining: a review, International Journal of Machine Tools and Manufacture, 43(8): 833–844, 2003, doi: 10.1016/S0890-6955(03)00059-2.
  • 21. Khorasani A.M., Yazdi M.R.S., Safizadeh M.S., Analysis of machining parameters effects on surface roughness: a review, International Journal of Computational Materials Science and Surface Engineering, 5(1): 69-84, 2012, doi: 10.1504/IJCMSSE.2012.049055.
  • 22. Dilbag S.P., Venkateswara R., A surface roughness prediction model for hard turning process, The International Journal of Advanced Manufacturing Technology, 32: 1115– 1124, 2007, doi: 10.1007/s00170-006-0429-2.
  • 23. Ozel U., Hsu T.K., Zeren E. ¨ , Effects of cutting edge geometry, workpiece hardness, feed rate and cutting speed on surface roughness and forces in finish turning of hardened AISI H13 steel, The International Journal of Advanced manufacturing Technology, 25: 262–269, 2005, doi: 10.1007/s00170-003-1878-5.
  • 24. Sahin Y.A., Motorcu A.R., Surface roughness model in machining hardened steel with cubic boron nitride cutting tool, International Journal of Refractory Metals and Hard Materials, 26(2): 84–90, 2008, doi: 10.1016/j.ijrmhm.2007.02.005.
  • 25. D’Addona D.M., Raykar S.J., Analysis of surface roughness in hard turning using wiper insert geometry, Procedia CIRP, 41: 841–846, 2016, doi: 10.1016/j.procir.2015.12.087.
  • 26. Rajeev D., Dinakaran D., Kanthavelkumaran N., Austin N., Experimental study of surface roughness in hard turning of AISI4140 steel with coated carbide tool, World Applied Sciences Journal, 34(10): 1310–1317, 2016, doi: 10.5829/idosi.wasj.2016.1310.1317.
  • 27. Bouacha K., Yallese M.A., Mabrouki T., Rigal J.F., Statistical analysis of surface roughness and cutting forces using response surface methodology in hard turning of AISI 52100 bearing steel with CBN tool, International Journal of Refractory Metals and Hard Materials, 28(3): 349–361, 2010, doi: 10.1016/j.ijrmhm.2009.11.011.
  • 28. Asilturk I., Akkus¸ H. ¨ , Determining the effect of cutting parameters on surface roughness in hard turning using the Taguchi method, Measurement, 44(9): 1697–1704, 2011, doi: 10.1016/j.measurement.2011.07.003.
  • 29. Yallesse M.A., Rigal J.F., Chaoui K., Boulanouar L., The effects of cutting conditions on mixed ceramic and cubic boron nitride tool wear and on surface roughness during machining of X200Cr12 Steel (60 HRC), Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 219(1): 35–55, 2005, doi: 10.1243/095440505X8082.
  • 30. Bhattacharya A., Das S., Majumder P., Batish A., Estimating the effect of cutting parameters on surface finish and power consumption during high speed machining of AISI 1045 steel using Taguchi design and ANOVA, Production Engineering, 3: 31–40, 2009, doi: 10.1007/s11740-008-0132-2.
  • 31. Hamdi A., Merghache S.M., Aliouane T., Effect of cutting variables on bearing area curve parameters (BAC-P) during hard turning process, Archive of Mechanical Engineering, 67(1): 73–95, 2020, doi: 10.24425/ame.2020.131684.
  • 32. Meddour I., Yallese M.A., Khattabi R., Elbah M., Boulanouar L., Investigation and modeling of cutting forces and surface roughness when hard turning of AISI 52100 steel with mixed ceramic tool: cutting conditions optimization, The International Journal of Advanced Manufacturing Technology, 77: 1387–1399, 2015, doi: 10.1007/s00170-014- 6559-z.
  • 33. Bartarya G., Choudhury S.K., Effect of cutting parameters on cutting force and surface roughness during finish hard turning AISI52100 grade steel, Procedia CIRP, 1: 651– 656, 2012, doi: 10.1016/j.procir.2012.05.016.
  • 34. Das S.R., Kumar A., Dhupal D., Effect of machining parameters on surface roughness in machining of hardened AISI 4340 steel using coated carbide inserts, International Journal of Innovation and Applied Studies, 2(4): 445–453, 2013, https://core.ac.uk/ reader/25718000.
  • 35. Agrawal A., Goel S., Rashid W.B., Price M., Prediction of surface roughness during hard turning of AISI 4340 steel (69 HRC), Applied Soft Computing, 30: 279–286, 2015, doi: 10.1016/j.asoc.2015.01.059.
  • 36. Hessainia Z., Belbah A., Yallese M.A., Mabrouki T., Rigal J.F., On the prediction of surface roughness in the hard turning based on cutting parameters and tool vibrations, Measurement, 46(5): 1671–1681, 2013, doi: 10.1016/j.measurement.2012.12.016.
  • 37. Sarnobat S.S., Raval H.K., Prediction of surface roughness from cutting tool vibrations in hard turning of AISI D2 steel of different hardness with conventional and wiper geometry CBN inserts, Journal of Applied Mechanical Engineering, 7(1): 1–7, 2018, doi: 10.4172/2168-9873.1000300.
  • 38. Upadhyay V., Jain P.K., Mehta N.K., In-process prediction of surface roughness in turning of Ti–6Al–4V alloy using cutting parameters and vibration signals, Measurement, 46(1): 154–160, 2013, doi: 10.1016/j.measurement.2012.06.002.
  • 39. Prasad B.S., Babu M.P., Correlation between vibration amplitude and tool wear in turning: Numerical and experimental analysis, Engineering Science and Technology, an International Journal, 20(1): 197–211, 2017, doi: 10.1016/j.jestch.2016.06.011.
  • 40. Abidi Y., Boulanouar L., Analyse de la correlation entre la rugosit´e et la vibration de coupe en usinage des aciers durcis, U.P.B. Scientific Bulletin Series D, 79(4): 157–170, 2017, https://www.scientificbulletin.upb.ro/rev docs arhiva/fullc17 730627.pdf.
  • 41. Yousefi S., Zohoor M., Experimental studying of the variations of surface roughness and dimensional accuracy in dry hard turning operation, The Open Mechanical Engineering Journal, 12: 175–191, 2018, doi: 10.2174/1874155X01812010175.
  • 42. Chuangwen X., Jianming D., Yuzhen C., Huaiyuan L., Zhicheng S., Jing X., The relationship between cutting parameters, tool wear, cutting force and vibration, Advance in Mechanical Engineering, 10(1): 1–14, 2018, doi: 10.1177/1687814017750434.
  • 43. Azizi M.W., Keblouti O., Boulanouar l., Yallese M.A., Design optimization in hard turning of E19 alloy steel by analysing surface roughness, tool vibration and productivity, Structural Engineering and Mechanics, 73(5): 501–513, 2020, doi: 10.12989/ sem.2020.73.5.501.
  • 44. Keblouti O., Boulanouar L., Azizi M.W., Bouziane A., Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration, Structural Engineering and Mechanics, 70(4): 395–405, 2019, doi: 10.12989/sem.2019.70.4.395.
  • 45. Ambhore N., Kamble D., Chinchanikar S., Evaluation of cutting tool vibration and surface roughness in hard turning of AISI 52100 steel: an experimental and ANN approach, Journal of Vibration Engineering & Technologies, 8: 455–462, 2020, doi: 10.1007/s42417- 019-00136-x.
  • 46. Abidi Y., Analysis of the compromise between cutting tool life, productivity and roughness during turning of C45 hardened, Production Engineering Archives, 27(1): 30–35, 2021, doi: 10.30657/pea.2021.27.4.
  • 47. Thomas J.L., Lambert B.K., Intermittent versus continuous cutting methods of tool life testing, International Journal of Production Research, 2(3): 283–289, 1963, doi: 10.1080/00207547208929927.
  • 48. Abidi Y., Relationship between surface roughness and chip morphology when turning hardened steel, Production Engineering Archives, 26(3): 92–98, 2020, doi: 10.30657/ pea.2020.26.19.
  • 49. Dong D.Y., Choi Y.G., Kim H.G., Hsiac A., Study of the correlation between surface roughness and cutting vibrations to develop an on-line roughness measuring technique in hard turning, International Journal of Machine Tools and Manufacture, 36(4): 453–464, 1996, doi: 10.1016/0890-6955(95)00074-7.
  • 50. Pourmostaghimi V., Zadshakoyan M., Sadeghi M.H., Vibration based assessment of tool wear in hard turning using wavelet packet transform and neural networks, International Journal Advanced Design and Manufacturing Technology, 12(2): 17–26, 2019, http://admt.iaumajlesi.ac.ir/article 668451 fc854b055c569088e9c8b8f5123e91f8.pdf.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-908dca1d-2311-4b0b-98ca-74cc77324d1a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.