Czasopismo
2022
|
Vol. 22, no. 3
|
art. no. e128
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
A novel gapped eccentric steel brace (GESB) was proposed to achieve a two-stage retroft strategy for seismic upgrading of reinforced concrete (RC) frames. The steel brace was isolated from the RC frame at low story drifts using thin layers of polymer cellular materials, while the brace was activated at high drifts. Mild steel coupling beam was introduced into the brace system as a damper to improve the energy dissipation capacity of the system. Four frames were subjected to pseudostatic reversed cyclic loading procedure, including one bare frame and three retroftted frames with the novel system. The experimental results indicated that the GESB system presented an obvious two-stage behavior which was generally superior in terms of providing second-stage enhancement of stifness while avoiding drastic intervention in the initial vibration characteristics of the primary structure. Besides, the yield of mild steel beam greatly increased the energy dissipation capacity of the system. Compared with the reference frame, cracks were more difuse in the retroftted frames rather than concentrated at the column end, which means all of the original structure elements were fully used.
Czasopismo
Rocznik
Tom
Strony
art. no. e128
Opis fizyczny
Bibliogr. 43 poz., rys., tab., wykr.
Twórcy
autor
- Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, Jiangsu, China
autor
- Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, Jiangsu, China, sunjian@seu.edu.cn
autor
- Key Laboratory of Concrete and Prestressed Concrete Structures of the Ministry of Education, Southeast University, Nanjing, Jiangsu, China, qhx101000854@163.com
Bibliografia
- 1. Liel AB, Haselton CB, Deierlein GG, Baker JW. Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Struct Saf. 2009;31(2):197-211. https://doi.org/10.1016/j.strusafe.2008.06.002.
- 2. Ismail N, El-Maaddawy T, Khattak N. Quasi-static in-plane testing of FRCM strengthened non-ductile reinforced concrete frames with masonry inflls. Constr Build Mater. 2018;186:1286-98. https://doi.org/10.1016/j.conbuildmat.2018.07.230.
- 3. Kim Y, Lim SA, Park HS. Optimal seismic retroft method for reinforced concrete columns with wing walls. Eng Struct. 2020. https://doi.org/10.1016/j.engstruct.2020.110390.
- 4. Qu Z, Wada A, Motoyui S, Sakata H, Kishiki S. Pin-supported walls for enhancing the seismic performance of building structures. Earthq Eng Struct Dyn. 2012;41(14):2075-91. https://doi.org/10.1002/eqe.2175.
- 5. Madden GJ, Symans MD, Wongprasert N. Experimental verifcation of seismic response of building frame with adaptive sliding base-isolation system. J Struct Eng. 2002;128(8):1037. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1037).
- 6. Landi L, Lucchi S, Diotallevi PP. A procedure for the direct determination of the required supplemental damping for the seismic retrofit with viscous dampers. Eng Struct. 2014;71: 137-49. https://doi.org/10.1016/j.engstruct.2014.04.025.
- 7. Furtado A, Rodrigues H, Varum H, Costa A. Evaluation of diferent strengthening techniques’ efciency for a soft storey building. Eur J Environ Civ Eng. 2017;21(4):371-88. https://doi.org/10.1080/19648189.2015.1119064.
- 8. Chang S, Chen T, Tran N. Seismic retrof tting of RC columns with RC jackets and wing walls with diferent structural details. Earthq Eng Eng Vib. 2014;2(13):279-92. https://doi.org/10.1007/s11803-014-0230-4.
- 9. Javadi P, Yamakawa T. Strength and ductility type retroft of softfrst-story RC frames through the steel-jacketed non-reinforced thick hybrid wall. Eng Struct. 2019;186:255-69. https://doi.org/10.1016/j.engstruct.2019.02.013.
- 10. Bousselham A. State of research on seismic retroft of RC beam-column joints with externally bonded FRP. J Compos Constr. 2010;14(1):49-61. https://doi.org/10.1061/(ASCE)CC.1943-5614.0000049.
- 11. Miano A, Sezen H, Jalayer F, Prota A. Performance-based assessment methodology for retroft of buildings. J Struct Eng. 2019;145(12):15p. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002419.
- 12. Varum H, Teixeira-Dias F, Marques P, Pinto AV, Bhatti AQ. Performance evaluation of retroftting strategies for non-seismically designed RC buildings using steel braces. Bull Earthq Eng. 2013;11(4):1129-56. https://doi.org/10.1007/s10518-012-9421-4.
- 13. Stazi F, Serpilli M, Maracchini G, Pavone A. An experimental and numerical study on CLT panels used as infll shear walls for RC buildings retroft. Constr Build Mater. 2019;211:605-16. https://doi.org/10.1016/j.conbuildmat.2019.03.196.
- 14. Ahmad N, Masoudi M. Eccentric steel brace retroft for seismic upgrading of deficient reinforced concrete frames. Bull Earthq Eng. 2020;18(6):2807-41. https://doi.org/10.1007/s10518-020-00808-0.
- 15. Rahimi A, Maheri MR. The efects of steel X-brace retroftting of RC frames on the seismic performance of frames and their elements. Eng Struct. 2020;206: 110149. https://doi.org/10.1016/j.engstruct.2019.110149.
- 16. TahamouliRoudsari M, Entezari A, Hadidi M, Gandomian O. Experimental assessment of retroftted RC frames with different steel braces. Structures. 2017;11:206-17. https://doi.org/10.1016/j.istruc.2017.06.003.
- 17. Pan K, Tsai K, Khoo H, Wu A, Li C. Seismic retroft of reinforced concrete frames using buckling-restrained braces with bearing block load transfer mechanism. Earthq Eng Struct Dyn. 2016;45(14):2303-26. https://doi.org/10.1002/eqe.2763.
- 18. Zahrai SM, Froozanfar M. Improving seismic behavior of MRFs by U-shaped hysteretic damper along diagonal brace. Int J Steel Struct. 2019;19(2):543-58. https://doi.org/10.1007/ s13296-018-0139-2.
- 19. Vafaei M, Omar Sheikh AM, Alih SC. Experimental study on the effciency of tapered strip dampers for the seismic retroftting of damaged non-ductile RC frames. Eng Struct. 2019. https://doi.org/10.1016/j.engstruct.2019.109601.
- 20. Seong JY, Min KW. An analytical approach for design of a structure equipped with friction dampers. Proc Eng. 2011;14:1245-51. https://doi.org/10.1016/j.proeng.2011.07.156.
- 21. Fateh A, Hejazi F, Jaafar MS, Karim IA, Adnan AB. Design of a variable stifness bracing system: mathematical modeling, fabrication, and dynamic analysis. Soil Dyn Earthq Eng. 2016;80:87-101. https://doi.org/10.1016/j.soildyn.2015.10.009.
- 22. Zhao J, Qiu H, Sun J, Jiang H. Seismic performance evaluation of diferent strategies for retroftting RC frame buildings. Structures. 2021;34:2355-66. https://doi.org/10.1016/j.istruc.2021.09.016.
- 23. Li G, Zhu L, Li H. Displacement-based seismic design for buildings installed hysteretic dampers with hardening post-yielding stifness. Adv Struct Eng. 2019;22(16):3420-34. https://doi.org/10.1177/1369433219852715.
- 24. Cheraghi A, Zahrai SM. Cyclic testing of multilevel pipe in pipe damper. J Earthq Eng. 2017;10(23):1695-718. https://doi.org/10.1080/13632469.2017.1387191.
- 25. Beigi HA, Christopoulos C, Sullivan T, Calvi M. Seismic response of a case study soft story frame retroftted using a GIB system. Earthq Eng Struct D. 2015;44(7):997-1014. https://doi.org/10.1002/eqe.2496. 26.
- 26. Tsantilis AV, Triantafllou TC. Innovative seismic isolation of masonry inflls using cellular materials at the interface with the surrounding RC frames. Eng Struct. 2018;155:279-97. https://doi. org/10.1016/j.engstruct.2017.11.025.
- 27. Xu L. Research on mechanical behavior and theoretical model of low-yield-point steel shear panel dampers. Tsinghua University. 2017 (in Chinese).
- 28. GBJ11-1989. Code for seismic design of buildings. Beijing: China Architecture & Building Press; 1989 (in Chinese).
- 29. ANSI/AISC 360-10. Specifcation for structural steel buildings. Chicago: American Institute of Steel Construction; 2010.
- 30. Ji X, Hutt CM. Seismic design and application of hybrid coupled walls with replaceable steel coupling beams in high-rise buildings. Struct Des Tall Spec. 2020;29(8): e1727. https://doi.org/10.1002/tal.1727.
- 31. ANSI/AISC 341-10. Seismic provisions for structural steel buildings. Chicago: American Institute of Steel Construction; 2010.
- 32. GB 50011-2010. Code for seismic design of buildings. Beijing: China Architecture & Building Press; 2016 (in Chinese).
- 33. GB 50010-2010. Code for design of concrete structures. Beijing: China Architecture & Building Press; 2015 (in Chinese).
- 34. Ghobarah A, El-Attar M, Aly NM. Evaluation of retroft strategies for reinforced concrete columns: a case study. Eng Struct. 2000;22(5):490-501. https://doi.org/10.1016/S0141-0296(98)00137-0.
- 35. GB/T 50081-2002. Standard for test method of mechanical properties on ordinary concrete. Beijing: China Architecture & Building Press; 2003 (in Chinese).
- 36. GB/T 50152–2012. Standard for test method of concrete structures. Beijing: China Architecture & Building Press, 2012 (in Chinese).
- 37. GB/T 228.1-2010. Metallic materials-tensile testing-part 1: method of test at room temperature. Beijing: Standards Press of China; 2010 (in Chinese).
- 38. GB/T 18942.1-2003. Polymeric material, cellular fexible-determination of stress-strain characteristic in compression-part 1: low-density materials. Beijing: Standards Press of China; 2003 (in Chinese).
- 39. FEMA 461. Interim Testing Protocols for Determining the Seismic Performance Characteristics of Structural and Nonstructural Components. Redwood City, California: Applied Technology Council. 2007.
- 40. Ren X. Study on strengthening and seismic performance of reinforced concrete-steel irregular hybrid frame structures. Zhejiang: Zhejiang University; 2018. (in Chinese).
- 41. FEMA356. Prestandard and commentary for the seismic rehabilitation of building. Washington, D.C.: Federal Emergency Management Agency; 2000.
- 42. JGJ/T 101-2015. Specifcation for seismic test of buildings. Beijing: China Architecture & Building Press; 2015 (in Chinese).
- 43. Chopra A. Dynamics of structures-theory and applications to earthquake engineering. Englewood Clifs: Prentice-Hall; 2017.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9075bf41-50de-440b-b3a6-3d94dbbe66dd