Czasopismo
2019
|
Vol. 67, no. 2
|
101--124
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
In set theory without the Axiom of Choice (AC), we investigate the deductive strength and mutual relationships of the following statements: 1) Every infinite set X has an almost disjoint family A of infinite subsets of X with [formula]. (2) Every infinite set X has an almost disjoint family A of infinite subsets of X with [formula]. (3) For every infinite set X, every almost disjoint family in X can be extended to a maximal almost disjoint family in X. (4) For every infinite set X, no infinite maximal almost disjoint family in X has cardinality [formula]. (5) For every infinite set A, there is a continuum sized almost disjoint family A ⊆ Aω. (6) For every free ultrafilter U on ω and every infinite set A, the ultrapower Aω/U has cardinality at least [formula].
Rocznik
Tom
Strony
101--124
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
- Department of Statistics & Actuarial-Financial Mathematics, University of the Aegean, Karlovassi 83200, Samos, Greece, ltah@aegean.gr
Bibliografia
- [1] N. Brunner, Dedekind-Endlichkeit und Wohlordenbarkeit, Monatsh. Math. 94 (1982), 9-31.
- [2] M. Droste and J. K. Truss, Subgroups of small index in ordered permutation groups, Quart. J. Math. Oxford Ser. (2) 42 (1991), 31-47.
- [3] H. Höft and P. Howard, Well ordered subsets of linearly ordered sets, Notre Dame J. Formal Logic 35 (1994), 413-425.
- [4] H. Horowitz and S. Shelah, On the non-existence of mad families, Arch. Math. Logic 58 (2019), 325-338.
- [5] P. Howard and J. E. Rubin, Consequences of the Axiom of Choice, Math. Surveys Monogr. 59, Amer. Math. Soc., Providence, RI, 1998.
- [6] T. J. Jech, The Axiom of Choice, Stud. Logic Found. Math. 75, North-Holland, Amsterdam, 1973.
- [7] A. Lévy, Axioms of multiple choice, Fund. Math. 50 (1962), 475-483.
- [8] A. R. D. Mathias, Happy families, Ann. Math. Logic 12 (1977), 59-111.
- [9] D. Pincus, Adding dependent choice, Ann. Math. Logic 11 (1977), 105-145.
- [10] E. Tachtsis, On the existence of free ultrafilters on ω and on Russell-sets in ZF, Bull. Polish Acad. Sci. Math. 63 (2015), 1-10.
- [11] A. Törnquist, Definability and almost disjoint families, Adv. Math. 330 (2018), 61-73.
- [12] J. K. Truss, Infinite permutation groups II. Subgroups of small index, J. Algebra 120 (1989), 494-515.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9031d890-7679-4d68-bc6f-2bbbd843df41