Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2016 | Vol. 16, no. 4 | 590--604
Tytuł artykułu

Analytical modeling on 3D chip formation of rotary surface in orthogonal turn-milling

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Orthogonal turn-milling is a relatively new process technology, the coupling turning and milling processes together and enjoying the advantages of both. However, to the best knowledge of the authors, few studies on the chips of the orthogonal turn-milling have been reported, although the understanding of the chips is important when studying turn-milling mechanism, machining heat and tool wear. In this paper, the analytical models of 3D chips (under both centric and eccentric situations) are proposed based on the orthogonal turn-milling principle and the mathematical expressions of chip thickness and height are obtained considering both side and end cutting edges. Based on the models, numerical analysis is performed to understand the relationships between chip dimensions and cutting parameters. To verify the proposed models and numerical results, the validation experiments are conducted. The comparison shows the consistency between theoretical and experimental results in terms of chip geometries and volumes under different cutting speeds and feed rates. Some findings are presented based on this study, which might provide a theoretical foundation and reference for the orthogonal turn-milling mechanism research.
Wydawca

Rocznik
Strony
590--604
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
  • School of Mechanical Engineering and Automation, Northeastern University, China, zld1999@gmail.com
autor
  • School of Mechanical Engineering and Automation, Northeastern University, China
autor
  • School of Mechanical Engineering and Automation, Northeastern University, China
Bibliografia
  • [1] A. Schubert, A. Nestler, R. Funke, Influence of cutting edge geometry and cutting parameters on surface finish in turn milling, Materialwissenschaft und Werkstofftechni 1 (9) (2010) 795–801.
  • [2] E. Budak, A. Çomak, E. Öztürk, Stability and high performance machining conditions in simultaneous milling, CIRP Annals – Manufacturing Technology 62 (1) (2013) 403–406.
  • [3] J. Kopac, M. Pogacink, Theory and practice of achieving quality surface in turn-milling, International Journal of Machine Tools Manufacture 37 (5) (1997) 709–715.
  • [4] S. Ekinovic, E. Begovic, A. Silajdzija, Comparison of machined surface quality obtained by high-speed machining and conventional turning, Machining Science and Technology 1 (4) (2007) 531–551.
  • [5] M. Pogacink, J. Kopac, Dynamic stabilization of the turn-milling process by parameter optimization, Proceedings of the Institution of Mechanical Engineers Part B – Journal of Engineering Manufacture 214 (2) (2000) 127–135.
  • [6] H. Schulz, High speed turn-milling – a new precision manufacturing technology for the machining of rotationally symmetrical workpieces, Annals of the CIRP 39 (1) (1990) 107–109.
  • [7] H. Schulz, T. Kneisel, Turn-milling of hardened steel – an alternative to turning, Annals of the CIRP 3 (1) (1994) 93–96.
  • [8] Z.H. Jiang, C.D. Jia, Research on the forming mechanism of surface machined by orthogonal turn-milling, Chinese Journal of Mechanical Engineering 4 (9) (2004) 121–123.
  • [9] S.K. Choudhury, K.S. Mangrulkar, Investigation in orthogonal turn-milling for the machining of rotationally symmetrical workpieces, Journal of Materials Processing Technology 99 (2) (2000) 120–128.
  • [10] S.K. Choudhury, J.B. Bajpai, Investigation in orthogonal turn-milling towards better surface finish, Journal of Materials Processing Technology 170 (7) (2005) 487–493.
  • [11] C.Z. Jin, C.D. Jia, Research on mechanism of chip formation in orthogonal turn-milling high strength steel, Journal of Harbin Institute of Technology 5 (9) (2006) 1610–1612.
  • [12] V. Savas, C. Ozay, The optimization of the surface roughness in the process of tangential turn-milling using genetic algorithm, International Journal of Advanced Manufacturing Technology 37 (4) (2008) 335–340.
  • [13] V. Savas, C. Ozay, Analysis of the surface roughness of tangential turn-milling for machining with end cutting tool, Journal of Materials Processing Technology 186 (6) (2007) 279–283.
  • [14] S. Skoric, T. Udiljak, D. Ciglar, Study of the suitability of the machining of rotating surfaces, Transactions of Fame 32 (3) (2008) 69–83.
  • [15] K.D. Bouzakis, O. Friderikos, I. Tsiafis, FEM-supported simulation of chip formation and flow in gear hobbing of spur and helical gears, Journal of Manufacturing Science and Technology 1 (2008) 18–26.
  • [16] M. Sima, T. Ozel, Modeling material constitutive models for serrated chip formation simulations and experimental validation in machining of titanium alloy Ti-6Al-4V, International Journal of Machine Tools & Manufacture 50 (2010) 943–960.
  • [17] J. Lorentzona, N. Jarvstrat, B.L. Josefson, Modelling chip formation of alloy 718, Journal of Materials Processing Technology 209 (2009) 4645–4653.
  • [18] J. Sun, Y.B. Guo, A new multi-view approach to characterize 3D chip morphology and properties in end milling titanium Ti-6Al-4V, International Journal of Machine Tools & Manufacture 48 (2) (2008) 1486–1494.
  • [19] J.C. Aurich, H. Bil, 3D finite element modelling of segmented chip formation, Annals of the CIRP 55 (1) (2006) 33–36.
  • [20] S. Sun, M. Brandt, M.S. Dargusch, Characteristics of cutting forces and chip formation in machining of titanium alloys, International Journal of Machine Tools & Manufacture 49 (5) (2009) 561–568.
  • [21] G. Sutter, G. List, Very high speed cutting of Ti-6Al-4V titanium alloy – change in morphology and mechanism of chip formation, International Journal of Machine Tools & Manufacture 66 (6) (2013) 37–43.
  • [22] H. Jiang, R. Shivpuri, Prediction of chip morphology and segmentation during the machining of titanium alloys, Journal of Materials Processing Technology 50 (6) (2004) 124–133.
  • [23] A.S. Harshad, S. Joshi, Analytical modeling of chip geometry and cutting forces in helical ball end milling of superalloy Inconel 718, International Journal of Machine Tools & Manufacture 3 (3) (2010) 204–217.
  • [24] X.G. Liang, Z.Q. Yao, An accuracy algorithm for chip thickness modeling in 5-axis ball-end finish milling, Computer-Aided Design 3 (5) (2011) 971–978.
  • [25] L.D. Zhu, H.N. Li, W.S. Wang, Research on rotary surface topography by orthogonal turn-milling, International Journal of Advanced Manufacturing Technology 9 (5) (2013) 2279–2292.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-9014f829-1fe6-4b90-9b2c-bff7fdc810d9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.