Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 20, no. 1 | 1--14
Tytuł artykułu

The outer-membrane component of the multi-drug efflux system - a structural analysis based on hydrophobicity distribution

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aim: The structure of a multi-drug efflux system (specifically the outer membrane part) is the focus of our analysis. The role of electrostatic interactions in the efflux process is well understood. Methods: Our analysis is made possible by the application of the fuzzy oil drop model in its modified form (FOD-M). Results: The distribution of hydrophobicity in the periplasmic and membrane domains plays a significant role in both stabilisation within the membrane and in tunnel formation, which facilitates the transport of antibiotics. Conclusions: The analysis presented in this paper reveals the specificity of hydrophobicity distribution in relation to biological activity, as well as a possible mechanism for the folding process of proteins involved in multi-drug efflux.
Wydawca

Rocznik
Strony
1--14
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Bioinformatics and Telemedicine, Jagiellonian University - Medical College, Krakow, Poland, myroterm@cyf-kr.edu.pl
  • Chair of Medical Biochemistry, Jagiellonian University - Medical College, Krakow, Poland
  • Faculty of Automatic, Electronics and Computer Science, Department of Applied Informatics, Silesian University of Technology, Gliwice, Poland
Bibliografia
  • 1. Huang Y, Zhu F, Koh J, Stanton D, Chen S, Wang N. Proteomic and bioinformatic analyses of proteins in the outer membrane and extracellular compartments and outer membrane vesicles of Candidatus Liberibacter species. Front Microbiol. 2022:13:977710.
  • 2. Iovine NM. Resistance mechanisms in Campylobacter jejuni. Virulence. 2013; 4(3):230-40.
  • 3. Li Y, Mima T, Komori Y, Morita Y, Kuroda T, Mizushima T, Tsuchiya T. A new member of the tripartite multidrug efflux pumps, MexVW-OprM, in Pseudomonas aeruginosa. J Antimicrob Chemother. 2003;52(4):572-5.
  • 4. Akshay SD, Deekshit VK, Raj JM, Maiti B. Outer Membrane Proteins and Efflux Pumps Mediated Multi-Drug Resistance in Salmonella: Rising Threat to Antimicrobial Therapy. ACS Infect Dis. 2023;9(11):2072-92.
  • 5. Abouelhadid S, Raynes J, Bui T, Cuccui J, Wren BW. Characterization of Posttranslationally Modified Multidrug Efflux Pumps Reveals an Unexpected Link between Glycosylation and Antimicrobial Resistance. MBio. 2020;11(6):e02604-20.
  • 6. Alenazy R. Drug Efflux Pump Inhibitors: A Promising Approach to Counter Multidrug Resistance in Gram-Negative Pathogens by Targeting AcrB Protein from AcrAB-TolC Multidrug Efflux Pump from Escherichia coli. BIology 2022;11(9):1328.
  • 7. Monlezun L, Phan G, Benabdelhak H, Lascombe MB, Enguéné VYN, Picard M, et al. New OprM structure highlighting the nature of the N-terminal anchor. Front Microbiol. 2015;6:667.
  • 8. Guan H-H, Yoshimura M, Chuankhayan P, Lin C-C, Chen N-C, Yang M-C, et al. Crystal structure of an antigenic outer-membrane protein from Salmonella Typhi suggests a potential antigenic loop and an efflux mechanism. Sci Rep. 2015;5:16441.
  • 9. Roterman I, Stapor K, Konieczny L. Transmembrane proteins-Different anchoring systems. Proteins. 2024;92(5):593-609. doi: 10.1002/prot.26646.
  • 10. Su C-C, Radhakrishnan A, Kumar N, Long F, Bolla JR, Lei H-T, et al. Crystal structure of the Campylobacter jejuni CmeC outer membrane channel. Protein Sci. 2014;23(7):954-61.
  • 11. Yonehara R, Yamashita E, Nakagawa A. Crystal structures of OprN and OprJ, outer membrane factors of multidrug tripartite efflux pumps of Pseudomonas aeruginosa. Proteins. 2016;84(6):759-69.
  • 12. Koronakis V, Sharff A, Koronakis E, Luisi B, Hughes C. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature. 2000;405(6789):914-9.
  • 13. Roterman I, Konieczny L. Protein Is an Intelligent Micelle. Entropy (Basel). 2023;25(6):850.
  • 14. Roterman I, Stapor K, Fabian P, Konieczny L, Banach M. Model of Environmental Membrane Field for Transmembrane Proteins. Int J Mol Sci. 2021;22(7):3619.
  • 15. Roterman I, Stapor K, Gądek K, Gubała T, Nowakowski P, Fabian P, et al. Dependence of Protein Structure on Environment: FOD Model Applied to Membrane Proteins. Membranes (Basel). 2021;12(1):50.
  • 16. Levitt MA. A simplified representation of protein conformations for rapid simulation of protein folding. J. Mol. Biol. 1976;104:59-107.
  • 17. Kalinowska B, Banach M, Konieczny L, Roterman I. Application of Divergence Entropy to Characterize the Structure of the Hydrophobic Core in DNA Interacting Proteins. Entropy 2015;17(3):1477-1507.
  • 18. Kullback S, Leibler RA. On information and sufficiency. Ann. Math. Statist. 1951;22:79-86.
  • 19. Banach M, Stapor K, Konieczny L, Fabian P, Roterman I. Downhill, Ultrafast and Fast Folding Proteins Revised. Int J Mol Sci. 2020;21(20):7632.
  • 20. Theoretical and Computational Biophysics Group [Internet]. Visual Molecular Dynamics [cited 2024 Jan 26]. Available from: https://www.ks.uiuc.edu/Research/vmd/.
  • 21. Humphrey W, Dalke A, Schulten K. VMD – Visual Molecular Dynamics. J Mol Graph. 1996;14(1): 33-8.
  • 22. Roterman I, Stapor K, Konieczny L. Role of environmental specificity in CASP results. BMC Bioinformatics. 2023;24(1):425.
  • 23. Protein Structure Prediction Center [Internet]. Success Stories From Recent CASPs [cited 2024 Jan 26]. Available from: https://predictioncenter.org/.
  • 24. Dygut J, Kalinowska B, Banach M, Piwowar M, Konieczny L, Roterman I. Structural Interface Forms and Their Involvement in Stabilization of Multidomain Proteins or Protein Complexes. Int J Mol Sci. 2016;17(10):1741.
  • 25. Banach M, Konieczny L, Roterman I. Ligand binding cavity encoded as a local hydrophobicity deficiency. In: Roterman-Konieczna I, editors. From globular proteins to amyloids. Amsterdam, Oxford UK, Cambridge MA, USA: Elsevier; 2020. p. 91-4.
  • 26. Roterman I, Banach M. Solenoid – amyloid under control In: RotermanKonieczna I, editors. From globular proteins to amyloids. Amsterdam, Oxford UK, Cambridge MA, USA: Elsevier; 2020. p. 95-116.
  • 27. Roterman I, Stąpor K, Fabian P, Konieczny L. In Silico modeling of COVID-19 pandemic course differentiation using the FOD model, coronaviruses. Coronaviruses. 2022;3:45-57.
  • 28. Banach M, Konieczny L, Roterman I. The Amyloid as a Ribbon-Like Micelle in Contrast to Spherical Micelles Represented by Globular Proteins. Molecules. 2019;24(23):4395.
  • 29. Roterman I, Stapor K, Konieczny L. Engagement of intrinsic disordered proteins in proten-protein interaction. Front Mol Biosci. 2023;10:1230922.
  • 30. Roterman I, Stapor K, Fabian P, Konieczny L. New insights into disordered proteins and regions according to the FOD-M model. PLoS One. 2022;17(10):e0275300.
  • 31. Roterman I, Konieczny L.Protein folding – funnel model revised. Forthcoming 2024.
  • 32. Roterman I, Konieczny L. Environment conditions influencing the folding process. Forthcoming 2024.
  • 33. Roterman I, Sieradzan A, Stapor K, Fabian P, Wesołowski P, Konieczny L. On the need to introduce environmental characteristics in ab initio protein structure prediction using a coarse-grained UNRES force field. J Mol Graph Model. 2022;114:108166.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8fee8c91-a339-4138-88f1-6e746b61ce7f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.