Warianty tytułu
Języki publikacji
Abstrakty
Co@Co3O4@Nitrogen doped carbon (Co@Co3O4@NDC) composite is synthesized by high temperature carbonization of ionic liquids followed by low temperature thermal oxidation. In the process of high temperature carbonization, cobalt ions are reduced to metallic cobalt, producing Co@Nitrogen doped carbon (Co@NDC). Co@Co3O4 @NDC composite is obtained after low temperature oxidation, in which a part of the metallic cobalt is oxidized to Co3O4. The structural characterizations indicate that the composite is composed of three crystalline phases (carbon, Co and Co3O4). The results of transmission electron microscopy study show that the carbon materials not only coat the Co@Co3O4 nanoparticles, but also form carbon network that connects the Co@Co3O4 nanoparticles. This conductive carbon network is beneficial to improve the electrochemical performance of the composite. The electrochemical test results show that the Co@Co3O4 @NDC composite exhibits excellent electrochemical performance, delivering the discharge capacities of 790 and 304 mAh∙g-1 after 1500 cycles at 5 C and 10 C. This excellent electrochemical performance is due to synergistic effects of Co3O4, cobalt nanoparticles embedded in carbon which has high conductivity, and nitrogen functional groups.
Czasopismo
Rocznik
Tom
Strony
601--612
Opis fizyczny
Bibliogr. 66 poz., rys.
Twórcy
autor
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
autor
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China, mengyanshuang@163.com
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China
autor
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
autor
- School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China
- State Key Laboratory of Advanced Processing and Recycling of Non-ferrous Metals, Lanzhou 730050, China
autor
- Department of Manufacturing Engineering, Georgia Southern University, Statesboro, Georgia 30458, United States
Bibliografia
- [1] LIANG S., ZHU X., LIAN P., YANG W., WANG H., J. Solid State Chem., 184 (6) (2011), 1400.
- [2] CHERIAN C.T., SUNDARAMURTHY J., REDDY M.V., SURESH K.P., MANI K., PLISZKA D., SOW C.H., RAMAKRISHNA S., CHOWDARI B.V., ACS App. Mater. Interface., 5 (20) (2013), 9957.
- [3] BAI L.-Z., ZHAO D.-L., ZHANG T.-M., XIE W.-G., ZHANG J.-M., SHEN Z.-M., Electrochim. Acta, 107 (2013), 555.
- [4] REDDY M.V., CAI Y., FAN J., LOH K.P., CHOWDARI B.V.R., RSC Adv., 2 (25) (2012), 9619.
- [5] REDDY M.V., ZHANG B., LOH K.P., CHOWDARI B.V.R., Crystengcomm., 15 (18) (2013), 3568.
- [6] REDDY M.V., KENRICK K.Y.H., TANG Y.W., CHONG G.Y., LEONG G.H., CHOWDARI B.V.R., J. Electrochem. Soc., 158 (12) (2011), A1423.
- [7] YANG X., FAN K., ZHU Y., SHEN J., JIANG X., ZHAO P., LUAN S., LI C., Appl. Mater. Interface., 5 (3) (2013), 997.
- [8] WU H., DU N., WANG J., ZHANG H., YANG D., J. Power Sources, 246 (2014), 198.
- [9] WU H.B., CHEN J.S., HNG H.H., LOU X.W., Nanoscale, 4 (8) (2012), 2526.
- [10] HUANG Y., CHEN C., AN C., XU C., XU Y., WANG Y., JIAO L., YUAN H., Electrochim. Acta, 145 (2014), 34.
- [11] ZHANG H., WU J., ZHAI C., MA X., DU N., TU J., YANG D., Nanotechnolog., 19 (3) (2008), 035711.
- [12] LOU X.W., DENG D., LEE J.Y., FENG J., ARCHER L.A., Adv. Mater., 20 (2) (2008), 258.
- [13] YANG X., FAN K., ZHU Y., SHEN J., JIANG X., ZHAO P., LUAN S., LI C., ACS Appl. Mater. Interface., 5 (3) (2013), 997.
- [14] HUANG G., XU S., LU S., LI L., SUN H., ACS Appl. Mater. Interface., 6 (10) (2014), 7236.
- [15] CHEN J., XIA X.-H., TU J.-P., XIONG Q.-Q., YU Y.- X., WANG X.-L., GU C.-D., J. Mater. Chem., 22 (30) (2012), 15056.
- [16] XU J., WU J., LUO L., CHEN X., QIN H., DRAVID V., MI S., JIA C., J. Power Sources, 274 (2015), 816.
- [17] WANG F., LIANG L., SHI L., LIU M., SUN J., J. Alloy. Compd., 633 (2015), 65.
- [18] ABOUALI S., AKBARI GARAKANI M., ZHANG B., LUO H., XU Z.-L., HUANG J.-Q., HUANG J., KIM J.- K., J. Mater. Chem. A, 2 (40) (2014), 16939.
- [19] WANG X., LI X., ZHANG L., YOON Y., WEBER P.K., WANG H., GUO J., DAI H., Science, 324 (5928) (2009), 768.
- [20] LIU Y., LIU L., KONG L., KANG L., RAN F., Electrochim. Acta, 211 (2016), 469.
- [21] LIU Q., PU Z., TANG C., ASIRI A.M., QUSTI A.H., AL-YOUBI A.O., SUN X., Electrochem. Commun., 36 (6) (2013), 57.
- [22] ZHOU Z., GAO X., YAN J., SONG D., MORINAGA M.,Carbon, 42 (12 – 13) (2004), 2677.
- [23] MA C., SHAO X., CAO D., J. Mater. Chem., 22 (18)(2012), 8911.
- [24] ZHU Z., WANG S., DU J., JIN Q., ZHANG T., CHENG F., CHEN J., Nano Lett., 14 (1) (2014), 153.
- [25] MENG Y., XIA J., ZHU FL., ZHANG Y., Int. J. Electrochem.Sci., 11 (12) (2016), 9881.
- [26] WANG X., DAI S., Angewandte Chem. Int. Ed., 49 (37)(2010), 6664.
- [27] FULVIO P.F., LEE J.S., MAYES R.T., WANG X.,MAHURIN S.M., DAI S., Phys. Chem. Chem. Phys. Pccp., 13 (30) (2011), 13486.
- [28] SUN S., LANG J., WANG R., KONG L., LI X., YAN X., J. Mater. Chem. A, 2 (35) (2014), 14550.
- [29] ZHAO S., LIU W., LIU S., ZHANG Y., WANG H., CHEN S., Electrochim. Acta, 231 (2017), 511.
- [30] JIANG Y., YAN X., XIAO W., TIAN M., GAO L., QU D., TANG H., J. Alloy. Compd., 710 (2017), 114.
- [31] WU Z.S., REN W., WEN L., GAO L., ZHAO J., CHEN Z., ZHOU G., LI F., CHENG H.M., ACS Nano., 4 (6) (2010), 3187.
- [32] ZHANG P., GUO Z.P., HUANG Y., JIA D., LIU H.K.,J. Power Sources, 196 (16) (2011), 6987.
- [33] ZHOU K., LAI L., ZHEN Y., HONG Z., GUO J., HUANG Z., Chem. Eng. J., 316 (2017), 137.
- [34] LI B., CAO H., SHAO J., LI G., QU M., YIN G., Inorg. Chem., 50 (5) (2011), 1628.
- [35] LI M., XU S., ZHU Y., XU Y., YANG P., WANG L., CHU P.K., Mater. Lett., 132 (2014), 405.
- [36] ZHOU M., PU F., WANG Z., GUAN S., Carbon, 68 (3) (2014), 185.
- [37] FERRARI A.C., MEYER J.C., SCARDACI V., CASIRAGHI C., LAZZERI M., MSURI F., PISCANEC S., JIANG D., NOVOSELOV K.S., ROTH S., Phys. Rev. Lett., 97 (18) (2006), 187401.
- [38] JIN Z., YAO J., KITTRELL C., TOUR J.M., ACS Nano., 5 (5) (2011), 4112.
- [39] TANG X., FENG Q., HUANG J., LIU K., LUO X., PENG Q., J. Colloid Interf. Sci., 510 (2018), 368.
- [40] JIE W., HUI Y.Y., ZHANG Y., SHU P.L., HAO J., Appl. Phys. Lett., 102 (22) (2013), 223112.
- [41] HUANG W., ZUO Z., HAN P., LI Z., ZHAO T., J. El. Spectrosc. Rel. Phenom., 173 (2) (2009), 88.
- [42] REDDY M.V., XU Y., RAJARAJAN V., OUYANG T., CHOWDARI B.V.R., ACS Sustain. Chem. Eng., 3 (12) (2015), 3035.
- [43] LI W., ZHENG Y., WANG X., CHEN S., XU F., LI Z., WU J., SUN L., ZHUANG L., HOU H., ACS Appl. Mater. Interf., 6 (10) (2014), 7117.
- [44] LI D., SHI D., CHEN Z., LIU H., JIA D., GUO Z., RSC Advs., 3 (15) (2013), 5003.
- [45] MAO Y., DUAN H., XU B., ZHANG L., HU Y., ZHAO C., WANG Z., CHEN L., YANG Y., Energ. Environ. Sci., 5 (7) (2012), 7950.
- [46] WONG W.Y., DAUD W.R.W., MOHAMAD A.B., KADHUM A.A.H., LOH K.S., MAJLAN E.H., Int. J. Hydrogen Energ., 38 (22) (2013), 9421.
- [47] LI X., ZHU X.B., ZHU Y., YUAN Z., SI L.L., QIAN Y., Carbon, 69 (2) (2014), 515.
- [48] CHEN T., PAN L., LOH T.A., CHUA D.H., YAO Y., CHEN Q., LI D., QIN W., SUN Z., Dalton T., 43 (40) (2014), 14931.
- [49] YAN Z., HU Q., YAN G., LI H., SHIH K., YANG Z., LI X., WANG Z., WANG J., Chem. Eng. J., 321 (2017), 495.
- [50] RAMESH S., HALDORAI Y., SIVASAMY A., KIM H.S., Mater. Lett., 206 (2017), 39.
- [51] YIN F., YINGYING L., RENCHAO C., HAOYU W., XUEHUA Z., DONG G., GENGFENG Z., DONGYUAN Z., J. Am. Chem. Soc., 135 (4) (2013), 1524.
- [52] MENG Y., HAN W., ZHANG Z., ZHU F., ZHANG Y.,WANG D., J. Nanosci. Nanotechnol., 17 (3) (2017), 2000.
- [53] SU L., ZHONG Y., ZHOU Z., J. Mater. Chem. A, 1 (47) (2013), 15158.
- [54] REN G., HOQUE M.N.F., LIU J., WARZYWODA J., FAN Z., Nano Energ., 21 (2016), 162.
- [55] YAO W., YANG J., WANG J., NULI Y., J. Electrochem. Soc., 155 (12) (2008), A903.
- [56] NAM K.T., KIM D.W., YOO P.J., CHIANG C.Y., MEETHONG N., HAMMOND P.T., CHIANG Y.M., BELCHER A.M., Science, 312 (5775) (2006), 885.
- [57] MARZUKI N.S., TAIB N.U., HASSEN M.F., IDRIS N.H., Electrochim. Acta, 182 (2015), 452.
- [58] SUN X., SI W., LIU X., DENG J., XI L., LIU L., YAN C., SCHNIDT O.G., Nano Energ., 9 (2014), 168.
- [59] REDDY M.V., BEICHEN Z., NICHOLETTE L.J.E., KAIMENG Z., CHOWDARI B.V.R., Electrochem. Solid-State Lett., 14 (5) (2011), A79.
- [60] ZHAN L., CHEN H., FANG J., WANG S., DING L.-X., LI Z., ASHMAN P.J., WANG H., Electrochim. Acta, 209 (2016), 192.
- [61] KIM G.-P., NAM I., KIM N.D., PARK J., PARK S., YI J., Electrochem. Commun., 2 (2012), 93.
- [62] LI G.-C., HAO W., J. Alloy. Compd., 716 (2017), 156.
- [63] WANG J., ZHANG Q., LI X., XU D., WANG Z., GUO H., ZHANG K., Nano Energ., 6 (3) (2014), 19.
- [64] XING X., LIU R., LIU S., XIAO S., XU Y., WANG C., WU D., Electrochim. Acta, 194 (2016), 310.
- [65] MAI Y.J., TU J.P., GU C.D., WANG X.L., J. Power Sources, 209 (2012), 1.
- [66] MARKOVSKY B., RODKIN A., COHEN Y.S., PALCHIK O., LEVI E., AURBACH D., KIM H.J., SCHMIDT M., J. Power Sources, 119 – 121 (6) (2003), 504.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8fda5098-4a88-406d-93e4-6f9ac5f67a4f