Czasopismo
2015
|
Vol. 63, no. 3
|
217--225
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Consider the power series A(z)=∑∞n=1 α (n) zn, where α(n) is a completely additive function satisfying the condition α(p) = o(lnp) for prime numbers p. Denote by e(l/q) the root of unity e2πil/q. We give effective omega-estimates for A(e(l/pk)r) when r→1−. From them we deduce that if such a series has non-singular points on the unit circle, then it is a zero function.
Rocznik
Tom
Strony
217--225
Opis fizyczny
Bibliogr. 5 poz.
Twórcy
autor
- Moscow State University, Moscow, Russia, olegAP86@yandex.ru
Bibliografia
- [H] G. H. Hardy, On a case of term-by-term integration of an infinite series, Messenger Math. 39 (1910), 136-139.
- [L] L. G. Lucht, Power series with multiplicative coefficients, Math. Z. 177 (1981), 359-374.
- [LS] L. G. Lucht and A. Schmalmack, Polylogarithms and arithmetic function spaces, Acta Arith. 95 (2000), 361-382.
- [P1] O. A. Petrushov, On the behavior close to the unit circle of the power series with Möbius function coefficients, Acta Arith. 164 (2014), 119-136.
- [P2] O. A. Petrushov, On the behavior close to the unit circle of the power series whose coefficients are squared Möbius function values, Acta Arith. 168 (2015), 17-30.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8fb9888f-b99e-486f-a179-ae834a584fed