Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | Vol. 18, no 2 | 196--213
Tytuł artykułu

Impacts of Using Exhaust Gas Recirculation and Various Amount of Dimethyl Ether Premixed Ratios on Combustion and Emissions on a Dual-Fuel Compression Ignition Engine

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the presented research, the authors dealt with the specific properties of the combustion process of dimethyl ether (DME) in a combustion car (Volkswagen Golf IV) engine AJM 1.9 TDI PDE made by Volkswagen factory. Dimethyl ether is an alternative fuel produced most often from natural gas, which can be used in compression ignition engines as a single fuel or co-burned with diesel oil. This work describes the impacts of using exhaust gas recirculation system and various diesel to DME substitution ratios from 0% to approximately 25% (on an energy basis), on the combustion process in a dual-fuel diesel engine. The engine has been modified so that DME fuel is introduced into the intake manifold just before the intake valves. The diesel fuel supply system, operation algorithms of the engine electronic control unit and other engine elements were left unchanged as it was built by the manufacturer
Wydawca

Rocznik
Strony
196--213
Opis fizyczny
Bibliogr. 30 poz., fig.
Twórcy
  • Faculty of Mechanical Engineering and Ship Technology, Gdansk University of Technology, kneba@pg.edu.pl
Bibliografia
  • 1. Caban J., Vrabel J., Górnicka D., Nowak R., Jankiewicz M., Matijošius J. Overview of Energy Harvesting Technologies Used in Road Vehicles. Energies 2023; 16(9): 3787–3819.
  • 2. Šarkan B., Kuranc A., Sejkorova M., Caban J., Loman M. Comparison of the exhaust emissions of heavy-duty vehicle engines powered by diesel fuel (DF) and natural gas (LNG) in real operation conditions BT. Przemysł Chemiczny 2022; 101(1): 37–41.
  • 3. Ding S-L., Song E-Z., Yang L-P., Litak G., Wang Y-Y., Yao C. Analysis of chaos in the combustion process of premixed natural gas engine. Applied Thermal Engineering 2017; 121: 768–778.
  • 4. Jałowiec T., Wojtaszek H., Miciuła I. Analysis of the Potential Management of the Low Carbon Energy Transformation by 2050. Energies 2022; 15(7): 2351–2380.
  • 5. Dudley B. BP Energy Outlook 2019 edition: The Energy Outlook explores the forces shaping the global energy transition out to 2040 and the key uncertainties surrounding that. BP Energy Outlook, 2019.
  • 6. Stepanenko D, Kneba Z. DME as alternative fuel for compression ignition engines – a review. Combustion Engines 2019; 177(2): 172–179.
  • 7. Malek A., Taccani R., Kasperek D., Hunicz J. Optimization of energy management in a city bus powered by the hydrogen fuel cells. Communications - Scientific Letters of the University of Žilina 2021; 23(4): 56–67.
  • 8. Gardyński L., Kałdonek J., Caban J. Testing of Lubricating Properties of Mixtures of Diesel and Rme Biofuels With the Addition of Linoleic Acid. Archives of Automotive Engineering 2020; 87(1): 57–66.
  • 9. Monieta J., Szmukała M., Adamczyk F. The effect of natural deterioration on selected properties of rapeseed oil methyl esters. Fuel 2022; 330.
  • 10. Han S., Sik C. Applicability of dimethyl ether (DME) in a compression ignition engine as an alternative fuel. Energy Conversion and Management 2014; 86: 848–863.
  • 11. Theinnoi K., Suksompong P., Temwutthikun W. Engine Performance of Dual Fuel Operation with In-cylinder Injected Diesel Fuels and In-Port Injected DME. Energy Procedia 2017; 142: 461–467.
  • 12. Anubhav D., Kumar N., Saluja R-K. Optimization of Fuel Injection Strategies for Sustainability of DME in Combustion Engine. Springer Singapore 2022: 293–314.
  • 13. Mehra S., Agarwal A-K. Prospects and Challenges of DME Fueled Low-Temperature Combustion Engine Technology. Springer Singapore 2022: 261–291.
  • 14. Pham V-C., Rho B-S., Kim J-S., Lee W-J., Choi J-H. Effects of Various Fuels on Combustion and Emission Characteristics of a Four-Stroke Dual-Fuel Marine Engine. Journal of Marine Science and Engineering 2021; 9(10):1072–1104.
  • 15. Mittal G. Influence of fuel injection timing in a DME based CI engine at low load. Materials Today: Proceedings 2021; 46: 10987–10990.
  • 16. Ga B Van., Thai PQ. Soot emission reduction in a biogas-dme hybrid dual-fuel engine. Applied Sciences 2020; 10(10): 3416–3435.
  • 17. Park J., Choi I., Oh J., Lee C. Preliminary numerical study on exhaust emission characteristics of particulate matters and nitrogen oxide in a marine engine for marine diesel oil and dimethyl ether fuel. Journal of Marine Science and Engineering 2020; 8(5): 316–331.
  • 18. Shere A., Subramanian KA. Performance Enhancement and Emissions Reduction in a DME Fueled Compression Ignition Engine Using Hydrogen Under Dual-Fuel. Springer Nature Singapore 2023: 505–523.
  • 19. Sittichompoo S., Pridoung P., Sriphumma P., Songklod R., Theinnoi K. Effects of DME port-injection on performances of a single cylinder diesel engine in dual-fuel mode. The 2nd International Conference on Engineering Science and InnovativeTechnology (ESIT), Phuket, Thailand 2016.
  • 20. Wang Y., Zhao Y., Xiao F., Li D. Combustion and emission characteristics of a diesel engine with DME as port premixing fuel under different injection timing. Energy Conversion and Management 2014; 77: 52–60.
  • 21. Ying W., Li H., Longbao Z., Wei L. Effects of DME pilot quantity on the performance of a DME PCCIDI engine. Energy Conversion and Management 2010; 51(4): 648–654.
  • 22. Stepanenko D., Kneba Z. ECU calibration for gaseous dual fuel supply system in compression ignition engines. Combustion Engines 2020; 182(3): 33–37.
  • 23. Siadkowska K., Barański G., Sochaczewski R., Wendeker M. Experimental Investigation on Indicated Pressure and Heat Release for Direct Hydrogen Injection in a Dual Fuel Diesel Engine. Advances in Science and Technology Research Journal 2022; 16(3): 54–66.
  • 24. Stepanenko D., Kneba Z., Rudnicki J. Numerical methodology for evaluation the combustion and emissions characteristics on WLTP in the light duty dual-fuel diesel vehicle. Combustion Engines 2022; 189(2): 94–102.
  • 25. Kimo. Kigaz 310. Combustion Gas Analyzer. User Manual. Retrieved from: https://sauer-manngroup.com/sites/default/files/2017-09/NTang_Kigaz310_12-07-17.pdf.
  • 26. Krieger R-B., Borman G-L. Engineers AS of M. The computation of apparent heat release for internal combustion engines. ASME, 1966.
  • 27. McBride B-J., Zehe M-J., Gordon S. NASA Glenn coefficients for calculating thermodynamic properties of individual species. National Aeronautics and Space Administration. John H. Glenn Research Center at Lewis Field, 2002.
  • 28. Hu S., Wang H., Yang C., Wang Y. Burnt fraction sensitivity analysis and 0-D modelling of common rail diesel engine using Wiebe function. Applied Thermal Engineering 2017; 115: 170–177.
  • 29. Ying W., Li H., Longbao Z., Wei L. Effects of DME pilot quantity on the performance of a DME PCCIDI engine. Energy Conversion and Management 2010; 51(4): 648–654.
  • 30. Chen Z., Liu J., Wu Z., Lee C. Effects of port fuel injection (PFI) of n-butanol and EGR on combustion and emissions of a direct injection diesel engine. Energy Conversion and Management 2013; 76(10): 725–731.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8fa78883-ee15-41c5-9ac1-f61b10255b32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.