Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2015 | Vol. 67, nr 5 | 355--370
Tytuł artykułu

Surface effects on the wave propagation in composites with random dispersive parallel cylindrical nanofibers

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The propagation of elastic waves in composites with randomly distributed parallel cylindrical nanofibers is studied. The non-classical boundary conditions on the surface of nanofibers are derived by using the surface elasticity theory. The scattering waves from an individual nanofiber are obtained by the plane-wave expansion method. These scattering waves from all nanofibers are summed up to obtain the multiple-scattering waves. The effective propagation constants (speed and attenuation) of coherent waves and the associated effective dynamical moduli of composites are evaluated numerically. Based on these numerical results, the influences of the surface effects on the effective dynamical properties of composites are discussed.
Wydawca

Rocznik
Strony
355--370
Opis fizyczny
Bibliogr. 22 poz., rys.
Twórcy
autor
  • Department of Applied Mechanics University of Science and Technology Beijing 100083, China
autor
  • Department of Applied Mechanics University of Science and Technology Beijing Beijing 100083, China
autor
  • Department of Applied Mechanics University of Science and Technology Beijing Beijing 100083, China, weipj@ustb.edu.cn
autor
  • State Key Laboratory of Nonlinear Mechanics (LNM) Chinese Academy of Science, Beijing
Bibliografia
  • 1. D.Y. Li, J.A. Szpunar, Determination of single crystals’ elastic constants from the measurement of ultrasonic velocity in the polycrystalline material, Acta Metallurgica et Materialia, 40, 12, 3277–3283, 1992.
  • 2. Y.-C. Lee, J.O. Kim, J.D. Achenbach, Acoustic microscopy measurement of elastic constants and mass density, Ultrasonics, Ferroelectrics, and Frequency Control, 42, 2, 253–264, 1995.
  • 3. V. Giurgiutiu, A. Cuc, Embedded non-destructive evaluation for structural health monitoring, damage detection, and failure prevention, The Shock and Vibration Digest, 37, 2, 83–105, 2005.
  • 4. X. Liu, P. Wei, Estimation of interface damage of fiber-reinforced composites, Mechanics of Composite Material, 44, 1, 37–44, 2008.
  • 5. M.-H. Lu, L. Feng, Y.-F. Chen, Phononic crystals and acoustic metamaterials, Materials Today, 12, 12, 34–42, 2009.
  • 6. S.K. Bose, A.K. Mal, Axial shear waves in a medium with randomly distributed cylinders, Journal of the Acoustical Society of America, 55, 519-523, 1974.
  • 7. S.K. Bose, A.K. Mal, Elastic waves in a fiber-reinforced composite, Journal of the Mechanics and Physics of Solids, 22, 217–229, 1974.
  • 8. S.K. Bose, A.K. Mal, Longitudinal shear waves in a fiber-reinforced composite, International Journal of Solids and Structures, 9, 1075–1085, 1973.
  • 9. R.B. Yang, A.K. Mal, Multiple scattering of elastic waves in a fiber-reinforced composite, Journal of the Mechanics and Physics of Solids, 42, 1945–1968, 1994.
  • 10. Y. Shindo, N. Niwa, Scattering of antiplane shear waves in a fiber-reinforced composite medium with interfacial layers, Acta Mechanica, 117, 181–190, 1996.
  • 11. Y. Shindo, N. Niwa, R. Togawa, Multiple scattering of antiplane shear waves in a fiber-reinforced composite medium with interfacial layers, International Journal of Solids and Structures, 35, 7, 733–745, 1998.
  • 12. P.J. Wei, Z.P. Huang, Dynamic effective properties of the particle-reinforced composites with the viscoelastic interphase, International Journal of Solids and Structures, 41, 24-25, 6993–7007, 2004.
  • 13. P.J. Wei, A self-consistent approach to the dynamic effective properties of composites reinforced by distributed spherical particles, Acta Mechanica, 185, 67–79, 2006.
  • 14. M.E. Gurtin, A.I. Murdoch, A continuum theory of elastic material surfaces, Archive for Rational Mechanics and Analysis, 57, 291–323, 1975.
  • 15. Y. Ru, G.F. Wang, T.J. Wang, Diffractions of elastic waves and stress concentration near a cylindrical nano-inclusion incorporating surface effect, Journal of Vibration and Acoustics, 131, 061011, 2009.
  • 16. F.W. Qiang, P.J. Wei, L. Li, The effective propagation constants of SH wave in composites reinforced by dispersive parallel nanofibers, Science China Physics, Mechanics & Astronomy, 55, 7, 1172–1177, 2012.
  • 17. S.M. Hasheminejad, R. Avazmohammadi, Size-dependent effective dynamic properties of unidirectional nanocomposites with interface energy effects, Composite Sciences and Technology, 69, 2538–2546, 2009.
  • 18. C.M. Linton, P.A. Martin, Multiple scattering by random configurations of circular cylinders: second-order corrections for the effective wavenumber, Journal of the Acoustical Society of America, 117, 6, 3413–3423, 2005.
  • 19. J.M. Conoir, A.N. Norris, Effective wave numbers and reflection coefficients for an elastic medium containing random con?gurations of cylindrical scatterer, Wave Motion, 47, 183–197, 2010.
  • 20. V.B. Shenoy, Atomistic calculations of elastic properties of metallic fcc crystal surfaces, Physical Review B, 71, 1–14, 094104, 2005.
  • 21. L. Placidi, G. Rosi, I. Giorgio, A. Madeo, Reflection and transmission of plane waves at surfaces carrying material properties and embedded in second-gradient materials, Mathematics and Mechanics of Solids, 19, 5, 555–578, 2014.
  • 22. D.J. Steigmann, R.W. Ogden, Plane deformations of elastic solids with intrinsic boundary elasticity, [in:] Proceedings of The Royal Society of London, Series A, 453, 1959, 853–877, 1997.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8fa39021-8574-47d9-add3-f5f3d39ddc04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.