Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2024 | vol. 27, no. 172 | 38--53
Tytuł artykułu

Development of atomic layer deposition hemocompatible coatings for materials dedicated for the implants in the cardiovascular environment

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An atrial septal defect (ASD) is one of the most common congenital heart defects in children and the most frequent congenital defect found in adults. Currently, several types of kits are available for percutaneous closure of ASD. The design of these implants is based on the Nitinol alloy. Despite the good biocompatibility of Nitinol alloys, the use of these materials for long-term implantation is questionable due to the high nickel content and the risk of releasing nickel ions as a result of corrosion in the body’s environment. A way to improve the hemocompatibility of Nitinol alloys is to modify their surface. As part of this work, the conditions for the production of SiO2 surface layers using the atomic layer deposition (ALD) method and laser surface modification with three different laser cutting speeds were developed to improve biocompatibility. This allowed us for the comparison of different surface modifications (ALD and laser modification) in terms of their impact on cell-material interactions. The general analysis concerning biocompatibility confirmed the biological usability of the designed ALD deposited coatings. Surface nanostructuring had a positive effect on the natural biological layer formation. The analysis performed indicated the appropriate behaviour of the natural biological layer, known in the literature as pseudointima, in contact with blood. It was evident that platelet activation on the surface was reduced.
Wydawca

Rocznik
Strony
38--53
Opis fizyczny
Bibliogr. 12 poz., tab., wykr., zdj.
Twórcy
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland, szawiraacz.k@imim.pl
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland
  • Foundation of Cardiac Surgery Development, Institute of Heart Prostheses, 345A Wolności St., 41-800 Zabrze, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland
  • Department of Experimental Mechanics and Biomechanics, Faculty of Mechanical Engineering, Cracow University of Technology, 37 Jana Pawła II Av., 31-864 Krakow, Poland
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40 St., Zabrze 41-800, Poland
  • Department of Biomaterials and Medical Devices Engineering, Faculty of Biomedical Engineering, Silesian University of Technology, Roosevelta 40 St., Zabrze 41-800, Poland
  • Institute of Optoelectronics, Military University of Technology in Warsaw, 2 Gen. S. Kaliskiego Str., 00-908 Warsaw, Poland
autor
  • Institute of Metallurgy and Materials Science, Polish Academy of Sciences, 25 Reymonta St., 30-059 Krakow, Poland, major.r@imim.pl
Bibliografia
  • [1] M.J. Van Ligten, D.E. Rappaport, L.B. Querin, W.A. Martini: Atrial Septal Defect (ASD) Repair Unveiling an Unusual Conduction Conundrum: A Wenckebach Case Report., Cureus 16 (2024) e62073. https://doi.org/10.7759/cureus.62073.
  • [2] G. Fischer, J. Stieh, A. Uebing, U. Hoffmann, G. Morf, H.H. Kramer: Experience with transcatheter closure of secundum atrial septal defects using the Amplatzer septal occluder: a single centre study in 236 consecutive patients. Heart 89 (2003) 199-204. https://doi.org/10.1136/heart.89.2.199.
  • [3] S. Shrivastava, S. Shrivastava, S.V.V. Allu, P. Schmidt: Transcatheter Closure of Atrial Septal Defect: A Review of Currently Used Devices. Cureus 15 (2023) e40132. https://doi.org/10.7759/cureus.40132.
  • [4] T. He, J. He, Z. Wang, Z. Cui: Modification strategies to improve the membrane hemocompatibility in extracorporeal membrane oxygenator (ECMO). Adv Compos Hybrid Mater 4 (2021) 847-864. https://doi.org/10.1007/s42114-021-00244-x.
  • [5] R. Fiszer, M. Chojnicki, A. Sukiennik, I. Świątkiewicz, M. Woźnicki: Embolizacja prawej komory zestawem Amplatza implantowanym w ubytek przegrody międzyprzedsionkowej. Folia Cardiologica Excerpta 2(4) (2007) 162-165.
  • [6] C. Constant, S. Nichols, É. Wagnac, Y. Petit, A. Desrochers, V. Braïlovski: Biocompatibility and mechanical stability of Nitinol as biomaterial for intra-articular prosthetic devices. Materialia (Oxf) 9 (2020) 100567. https://doi.org/10.1016/j.mtla.2019.100567.
  • [7] M. Jenko, M. Godec, A. Kocijan, R. Rudolf, D. Dolinar, M. Ovsenik, M. Gorenšek, R. Zaplotnik, M. Mozetic: A new route to biocompatible Nitinol based on a rapid treatment with H2/O2 gaseous plasma. Appl Surf Sci 473 (2019) 976-984. https://doi.org/10.1016/j.apsusc.2018.12.140.
  • [8] A. Bandyopadhyay, I. Mitra, S.B. Goodman, M. Kumar, S. Bose: Improving biocompatibility for next generation of metallic implants, Prog Mater Sci 133 (2023) 101053. https://doi.org/10.1016/j.pmatsci.2022.101053.
  • [9] S. Shabalovskaya, J. Anderegg, J. Van Humbeeck: Critical overview of Nitinol surfaces and their modifications for medical applications. Acta Biomater 4 (2008) 447-467. https://doi.org/10.1016/j.actbio.2008.01.013.
  • [10] J.D. Hochberg, D.M. Wirth, J.K. Pokorski: Surface‐Modified Melt Coextruded Nanofibers Enhance Blood Clotting In Vitro. Macromol Biosci 22 (2022). https://doi.org/10.1002/mabi.202200292.
  • [11] V.S. Sottiurai, S.L. Sue, M.K. Hsu, W.K. Mann, R.C. Batson, Pseudointima formation in woven and knitted dacron grafts. A comparative ultrastructural analysis. J Cardiovasc Surg (Torino) 30 (1989) 808-816.
  • [12] P.N. Osuchowska, R. Ostrowski, A. Sarzyński, M. Strzelec, Z. Mierczyk, E.A. Trafny: Microstructured polyethylene terephthalate (PET) for microsieving of cancer cells. Results Phys 15 (2019) 102612. https://doi.org/10.1016/j.rinp.2019.102612.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8f97332c-07fa-4f2a-b698-df10ec5c56d5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.