Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | R. 96, nr 1 | 113--117
Tytuł artykułu

Automatic generation of high performance morphological filters to fix missing data in depth images on real-time embedded systems for visually impaired people

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
PL
Automatyczne generowanie filtru morfologicznego umo˙zliwiaj ˛acego odzyskiwanie brakuj ˛acych danych w systemie wizualizacji i identyfikacji obrazu człowieka
Języki publikacji
EN
Abstrakty
EN
The paper presents an evolutionary multi-objective approach to automatically generate morphological filters to solve unknown distances areas, found in depth images used by real-time embedded systems for visually impaired people, and to prevent accidents. It was used Cartesian Genetic Programming as base for the NSGAII multi-objective optimization algorithm proposed to optimize two objectives: low error rates for quality x low complexity for speed. Results showed this approach was able to deliver feasible solutions with good quality and speed to be used in real-time systems.
PL
W artykule zaprezentowano metodę ewolucyjną do automatycznego generowania morfologicznego filtru do określania brakujących danych w obrazach ludzi otrzymywanych on-line. Użyto programu Cartesian Genetic do optymalizacji algorytmu. Zastosowane rozwiązanie umożliwiało dostarczanie poprawę szybkości o dokładności przetwarzania obrazu.
Wydawca

Rocznik
Strony
113--117
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
  • Federal Institute of São Paulo, Av. Zélia de Lima Rosa - 100, CEP: 18550-000, Boituva-SP, Brazil, dourado@ifsp.edu.br
  • Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos-SP, Brazil
  • Federal University of São Carlos, Rod. Washington Luís - km 235, CEP: 13565-905, São Carlos-SP, Brazil, emerson@dc.ufscar.br
Bibliografia
  • [1] Kazimierz KRZYWICKI. SoC Research and Development Platform for Distributed Embedded Systems. Przegląd Elektrotechniczny, 1(10):264-267, 2016.
  • [2] Jean Liénard, Andre Vogs, Demetrios Gatziolis, and Nikolay Strigul. Embedded, real-time UAV control for improved, imagebased 3D scene reconstruction. Measurement, 81:264-269, mar 2016.
  • [3] Przemysław PTAK. Embedded system to control lighting of the office workplace. Przegląd Elektrotechniczny, 1(11):78-81, 2018.
  • [4] Xiaocong Fan. Real-Time Embedded Systems: Design Principles and Engineering Practices. 2015.
  • [5] Alexander Barkalov, Larysa Titarenko, and Małgorzata Mazurkiewicz. Foundations of Embedded Systems, volume 1 of Studies in Systems, Decision and Control. Springer International Publishing, Cham, 2019.
  • [6] Antonio Miguel Batista Dourado and Emerson Carlos Pedrino. Embedded Navigation and Classification System for Assisting Visually Impaired People, 2018.
  • [7] Matteo Poggi and Stefano Mattoccia. A Wearable Mobility Aid for the Visually Impaired based on embedded 3D Vision and Deep Learning. In First IEEE Workshop on ICT Solutions for eHealth (IEEE ICTS4eHealth 2016) in conjunction with the Twenty-First IEEE Symposium on Computers and Communications, 2016.
  • [8] Diego López-de Ipiña, Tania Lorido, and Unai López. Indoor Navigation and Product Recognition for Blind People Assisted Shopping. In Lecture Notes in Computer Science, volume 6693 LNCS, pages 33-40. 2011.
  • [9] J A Hesch and S I Roumeliotis. Design and Analysis of a Portable Indoor Localization Aid for the Visually Impaired. The International Journal of Robotics Research, 29(11):1400-1415, jan 2010.
  • [10] Xiaochen Zhang, Bing Li, Samleo L. Joseph, Jizhong Xiao, Yi Sun, Yingli Tian, J. Pablo Munoz, and Chucai Yi. A SLAM Based Semantic Indoor Navigation System for Visually Impaired Users. Proceedings - 2015 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2015, pages 1458-1463, 2016.
  • [11] Ruxandra Tapu, Bogdan Mocanu, and Titus Zaharia. A computer vision-based perception system for visually impaired. Multimedia Tools and Applications, pages 1-37, may 2016.
  • [12] Limin Zeng. Non-visual 2D representation of obstacles. ACM SIGACCESS Accessibility and Computing, (102):49-54, jan 2012.
  • [13] Boris Schauerte, Manel Martinez, Angela Constantinescu, and Rainer Stiefelhagen. An assistive vision system for the blind that helps find lost things. Computational Science and Its Applications- ICCSA 2007, 7383 LNCS(Chapter 83):566-572, jan 2012.
  • [14] Carlo Dal Mutto, Pietro Zanuttigh, and Guido M. Cortelazzo. TOF Cameras and Stereo Systems: Comparison and Data Fusion. In TOF Range-Imaging Cameras, volume 9783642275, pages 177-202. Springer Berlin Heidelberg, Berlin, Heidelberg, 2013.
  • [15] Stefano Mattoccia and Matteo Poggi. A passive RGBD sensor for accurate and real-time depth sensing self-contained into an FPGA. Proceedings of the 9th International Conference on Distributed Smart Camera - ICDSC ’15, pages 146-151, 2015.
  • [16] Larisa Dunai, Beatriz Defez Garcia, Ismael Lengua, and Guillermo Peris-Fajarnes. 3D CMOS sensor based acoustic object detection and navigation system for blind people. In IECON Proceedings (Industrial Electronics Conference), pages 4208- 4215, jan 2012.
  • [17] Fei Qi, Junyu Han, Pengjin Wang, Guangming Shi, and Fu Li. Structure guided fusion for depth map inpainting. Pattern Recognition Letters, 34(1):70-76, jan 2013.
  • [18] Emerson Carlos Pedrino and Valentin Obac Roda. Real-time morphological pipeline architecture using high-capacity programmable logical devices. Journal of Electronic Imaging, 16(2):023002, apr 2007.
  • [19] Julian F Miller and Peter Thomson. Cartesian Genetic Programming. In Genetic Programming, volume 1802, pages 121-132. Springer Berlin Heidelberg, Berlin, Heidelberg, jan 2000.
  • [20] P.C.D. Paris, E.C. Pedrino, and M.C. Nicoletti. Automatic learning of image filters using Cartesian genetic programming. Integrated Computer-Aided Engineering, 22(2):135-151, feb 2015.
  • [21] Emerson Carlos Pedrino, Jose Hiroki Saito, Edilson R R Kato, Orides Morandin, Luis Mariano Del Val Cura, Valentin Obac Roda, Mario L Tronco, and Roberto H Tsunaki. Automatic construction of image operators using a genetic programming approach. In 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA), pages 636-641. IEEE, aug 2015.
  • [22] Hugo Hedberg, Fredrik Kristensen, and Viktor Owall. Lowcomplexity binary morphology architectures with flat rectangular structuring elements. IEEE Transactions on Circuits and Systems I: Regular Papers, 55(8):2216-2225, 2008.
  • [23] Deb Kalyanmoy. Multi-objective optimization using evolutionary algorithms. John Wiley and Sons, 1 edition, 2001.
  • [24] J.F. Miller and S.L. Smith. Redundancy and computational efficiency in Cartesian genetic programming. IEEE Transactions on Evolutionary Computation, 10(2):167-174, apr 2006.
  • [25] Simon Harding, Vincent Graziano, Jürgen Leitner, and Jürgen Schmidhuber. MT-CGP: Mixed Type Cartesian Genetic Programming. In Proceedings of the fourteenth international conference on Genetic and evolutionary computation conference - GECCO ’12, page 751, New York, New York, USA, 2012. ACM Press.
  • [26] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and T. Meyarivan. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2):182-197, 2002.
  • [27] Carlo R. Raquel and Prospero C. Naval. An effective use of crowding distance in multiobjective particle swarm optimization. Proceedings of the 2005 conference on Genetic and evolutionary computation - GECCO ’05, page 257, 2005.
  • [28] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. Image Quality Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on Image Processing, 13(4):600-612, apr 2004.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8f95ce58-523b-4056-a856-c3474aff48a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.