Czasopismo
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
Heat recovery of exhaust gases from main and auxiliary marine diesel engines is an effective way to improve the technical and economic parameters of marine power plants. Improvements in engine efficiency necessitate an increase in the weight-size parameters of the waste heat boilers, which makes it difficult to recover heat. Intensification of the heat transfer process is considered to be an effective way to reduce these indicators. By utilising mathematical modelling, this paper shows the effectiveness of using profiled heating surfaces of waste heat boilers for this purpose. The use of elliptical heating surfaces with a mechanism of controlled flow separation, in the form of a triangular notch, is proposed. This will reduce surface drag and increase the overall thermal-hydraulic efficiency of the heat transfer processes. It is shown that the use of such surfaces in waste heat boilers makes it possible to increase the efficiency of marine power plants in tankers with a deadweight of about 45,500 tons up to 1.5% absolute and container ships with a deadweight of about 122,000 tons up to 2.5% absolute.
Czasopismo
Rocznik
Tom
Strony
94--101
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
- Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine, valeriy.kuznetsov@nuos.edu.ua
autor
- Admiral Makarov National University of Shipbuilding, Mykolaiv, Ukraine
Bibliografia
- 1. United Nations Conference on Trade and Development. Executive Summary. In Review of Maritime Transport. 2023. [Online]. https://unctad.org/system/files/officialdocument/rmt2023_en.pdf [Accessed: February 15, 2024].
- 2. Significant Ship 2014-2023. [Online] Available at: https://www.libramar.net/news/significant_ships_series/1-0-140 [Accessed: January 15, 2024].
- 3. Wong HY. Handbook of Essential Formulae and Data on heat transfer for engineers. Longman, London and New York; 1978, 216 p.
- 4. Project guides [Online]. Available at: https://www.man-es.com/marine/products/planning-tools-and-downloads/project-guides[Accessed: January 15, 2024].
- 5. Thulukkanam K. Heat Exchangers: Volume I Classification, Selection, and Thermal Design. Third Edition, CRC Press; 2024, 703 p. doi: 10.1201/ 9781003352044.
- 6. Kuznetsov VV. Justification of efficiency of plain shaped heat exchange surfaces to increase the compactness of power plants. Eastern-European Journal of Enterprise Technologies 6/8 (108), 2020, pp.17-27. doi: 10.15587/1729-4061.2020.214829.
- 7. Khalatov AA. Heat Transfer and Hydrodynamics in the Fields of Mass Forces: A Review of the Works Performed at the Institute of Physics and Technology of the National Academy of Sciences of Ukraine Part 2. Surface-vortex systems (depressions) (in Russian). Industrial Heat Engineering, t. 34, №1, 2012, pp. 21-33.
- 8. Kuznetsov V, Gogorenko O, Kuznetsova S. The development of long-range heat transfer surfaces for marine diesel engine charge air coolers, Scientific Journals of the Maritime University of Szczecin, 65 (137), 2021, pp. 51–57. doi: 10.17402/460.
- 9. Khalatov AA. New Vortex Technologies of Aerothermodynamics in Power Gas Turbine Engineering. Part 3. Improvement of Thermogasdynamic Processes (in Russian). Industrial Heat Engineering, t. 30, № 6, 2008, pp. 5-19.
- 10. Fatahian E, Nichkoohi, AL, Salarian, H, Khaleghinia J. Comparative study of flow separation control using suction and blowing over an airfoil with/without flap. Sādhanā, 44(11), 2019. doi:10.1007/s12046-019-1205-y.
- 11. Shahrabi AF. The control of flow separation: Study of optimal open loop parameters. Physics of Fluids, 31(3), 2019. doi:10.1063/1.5082945.
- 12. Redchits DA. Control of air flow separation on a cylinder using a dielectric barrier discharge (in Russian). Bulletin of Kharkiv National University, №1063, 2013, pp.144-159.
- 13. Viguera R, Anzai Y, Sasaki Y, Nonomura T. Experimental Observations of Transient Flows in Separation Control Using a Plasma Actuator. Actuators, 12, 218, 2023. doi 10.3390/act12060218.
- 14. EL-Sheikh M, El-Batsh H, Ali MAA, Zanoun E-S. Passive Flow Separation Control in Linear Compressor Cascade. 2019 Novel Intelligent and Leading Emerging Sciences Conference (NILES). doi:10.1109/niles.2019.8909306.
- 15. Zinchenko I, Skoryk A, Parafiynyk V. On the effect of spherical dimples at diffuser vane surface on performance of centrifugal compressor, Bulletin of NTU “KhPI”. Series: Power and heat engineering processes and equipment, no. 9(1181), 2016, pp. 37–43. doi: 10.20998/2078-774X.2016.09.05.
- 16. Khalatov AA, Okishev AV, Onishchenko VN. Generalisation of experimental data on the Reynolds analogy factor for heat transfer intensifiers of various types. Industrial Heat Engineering, vol. 32, №5, 2010, pp. 5–13.
- 17. About Code_Saturne. [Online]. Available: https://www.code-saturne.org/cms/web/ [Accessed: Apr. 10, 2023].
- 18. SimScale CFD. [Online]. Available: https://www.simscale.com/product/cfd/ [Accessed: Apr. 10, 2023].
- 19. Bystrov YA, Isayev SA, Kudryavtsev NA, Leont’yev AI. Numerical simulation of heat transfer vortex intensification in the pipe packs. St. Petersburg: Shipbuilding, 2005.
- 20. Gatski TB, Hussaini MY, Lumley JL. Simulation and Modelling of Turbulent Flows. Oxford University Press. Oxford, New York. 1996. 314 p. URL: https://www.academia.edu/10100418/SIMULATION_AND_MODELLING_OF_TURBULENT_FLOWS (last accessed: 20.12.2018).
- 21. 17012-901-011Г. Tanker for transportation of oil and petroleum products 39500 / 45300 Dw (in Russian). Specification. UkrCDB BSP. Mykolaiv, 1993, 680 p.
- 22. 17012-360.064.345Г. Fuel, lubricating oil and boiler water reserves. Steam balance of the boiler plant. (In Russian). Calculations. UkrCDB BSP. Mykolaiv, 1993. 254 p.
- 23. Waste Heat Recovery System (WHRS) for Reduction of Fuel Consumption, Emissions and EEDI 2018 [Online]. Available: https://www.biofuels.co.jp/waste-heat-recoverysystem. pdf [Accessed: Apr. 01, 2023].
- 24. Kuznetsov VV. Multi-Level Estimation of the Heat Transfer Processes Efficiency in the Power Plants Elements, (in Russian). Problemele Energeticii Regionale, №3(47), 2020, pp. 28-38. doi 10.5281/zenodo.4018947.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8f8a712c-7d81-44a5-80fc-8989aeddf9e9