Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2023 | Vol. 44, nr 1 | art. no. e6
Tytuł artykułu

Carbonic anhydrase production by Pseudomonas fragi

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Carbonic anhydrase is an important enzyme that can play a significant role in the processes of lowering carbon dioxide concentration in the atmosphere. The aim of the work was to investigate the extracellular carbonic anhydrase (CA) production by the bacteria Pseudomonas fragi. In the research, we focused on the evaluation of the phase of bacterial growth correlated with carbonic anhydrase production and on the evaluation of induction of CA production by calcium carbonate concentration in the nutrient medium. Presented data indicated that calcium carbonate can serve as the only carbon source for Pseudomonas fragi, inducing carbonic anhydrase secretion to culture broth. The enzyme was produced mainly in the adaptation growth phase reaching the maximal activity at the end of this phase or at the beginning of the growth phase. The maximal enzyme activity detected in all batches was at a similar level. The enzyme activity was constant but lower in the exponential phase growth. Therefore, the enzyme production is not growth-dependent, but it is correlated with bacteria adaptation to cultivation conditions.
Wydawca

Rocznik
Strony
art. no. e6
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Faulty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland
  • Faulty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland, malgorzata.jaworska@pw.edu.pl
Bibliografia
  • 1. Amata O., Marino T., Russo N., Toscano M., 2011. Catalytic activity of a “-class zinc and cadmium containing carbonic anhydrase. Compared work mechanisms. Phys. Chem. Chem. Phys., 13, 3468–3477. DOI: 10.1039/c0cp 01053g.
  • 2. Arnaut-Rollier I., Vauterin L., de Vos P., Massart D.L., Devriese L.A., de Zutter L., Van Hoof J., 1999. A numerical taxonomic study of the Pseudomonas flora isolated from poultry meat. J. Appl. Microbiol., 87, 15–28. DOI: 10.1046/j.1365-2672.1999.00785.x.
  • 3. Del Prete S., Vullo D., De Luca V., Supuran C.T., Capasso C., 2014. Biochemical characterization of the ‹-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA. J. Enzyme Inhib. Med. Chem., 29, 906–911. DOI: 10.3109/14756366.2013.868599.
  • 4. Franzetti L., Scarpellini M., 2007. Characterisation of Pseudomonas spp. isolated from foods. Ann. Microbiol., 57, 39–47. DOI: 10.1007/BF03175048.
  • 5. Giri A., Pant D., 2019. CO2 management using carbonic anhydrase producing microbes from western Indian Himalaya. Bioresour. Technol. Rep., 8, 100320. DOI: 10.1016/j.biteb. 2019.100320.
  • 6. Green D.W., Perry R.H. (Eds.), 1950. Perry’s Chemical Engineers‘ Handbook. McGraw-Hill Book Company Ing.
  • 7. Han Z., Li D., Zhao H., Yan H., Li P., 2017. Precipitation of carbonate minerals induced by the halophilic Chromohalobacter Israelensis under high salt concentrations: Implications for natural environments. Minerals, 7, 95. DOI: 10.3390/min7060095.
  • 8. Iliuta I., Rasouli H., Iliuta M.C., 2023. Intensified CO2 capture in wall-coated microreactors with immobilized carbonic anhydrase: Experimental and modelling. Sep. Purif. Technol., 307, 122590. DOI: 10.1016/j.seppur.2022.122590.
  • 9. Liao Q., Liu W., Meng Z., 2022. Strategies for overcoming the limitations of enzymatic carbon dioxide reduction. Biotechnology Advances, 60, 108024.
  • 10. Lindskog S., 1997. Structure and mechanism of carbonic anhy- drase. Pharmacol. Ther., 74, 1–20. DOI: 10.1016/S0163-7258(96)00198-2.
  • 11. Lindskog S., Coleman J.E., 1973. The catalytic mechanism of carbonic anhydrase. PNAS, 70, 2505–2508. DOI: 10.1073/pnas.70.9.2505.
  • 12. Liu R., Huang S., Zhang X., Song Y., He G., Wang Z., Lian B., 2021. Bio-mineralization, characterization, and stability of calcium carbonate containing organic matter. RSC Adv., 11, 14415–14425. DOI: 10.1039/D1RA00615K.
  • 13. Lu X., He Q., Wang Z, Cao M., Zhao J., Jiang J., Zhao R., Zhang H., 2019. Calcium carbonate precipitation mediated by bacterial carbonic anhydrase in a karst cave: Crystal mor- phology and stable isotopic fractionation. Chem. Geol., 530, 119331. DOI: 10.1016/j.chemgeo.2019.119331.
  • 14. Monod J., 1949. The growth of bacterial cultures. Annu. Rev. Microbiol., 3, 371–394. DOI: 10.1146/annurev.mi.03.100149.002103.
  • 15. Nathan V.K., Ammini P., 2019. Carbon dioxide sequestering ability of bacterial carbonic anhydrase in a mangrove soil microcosm and its bio-mineralization properties. Water Air Soil Pollut., 230, 192. DOI: 10.1007/s11270-019-4229-3.
  • 16. Nguyen K., Iliuta I., Bougie F., Pasquier L-C., Iliuta M.C., 2023. Techno-economic assessment of enzymatic CO2 capture in hollow fibre membrane contactors with immobilized carbonic an- hydrase. Sep. Purif. Technol., 307, 122702. DOI: 10.1016/j.seppur.2022.122702.
  • 17. Pan L., Li Q., Zhou Y., Song N., Yu L., Wang X., Xiong K., Yapa LS., Huo J., 2019. Effects of different calcium sources on the mineralization and sand curing of CaCO3 by carbonic anhydrase-producing bacteria. RSC Adv., 9, 40827–40834. DOI: 10.1039/C9RA09025H.
  • 18. Pereira J.N., Morgan M.E., 1957. Nutrition and physiology of Pseudomonas fragi. J. Bacteriol., 74, 710–713. DOI: 10.1128/ jb.74.6.710-713.1957.
  • 19. Prabhu Ch., Wanjari S., Puri A., Bhattacharya A., Pujari R., Yadav R., Das S., Labhsetwar N., Sharma A., Satyanarayanan T., Rayalu S., 2011. Region-specific bacterial carbonic anhydrase for biomimetic sequestration of carbon dioxide. Energy Fuels, 25, 1327–1332. DOI: 10.1021/ef101608r.
  • 20. Sharma A., Bhattacharya A., 2010. Enhanced biomimetic sequestration of CO2 into CaCO3 using purified carbonic anhydrase from indigenous bacterial strains. J. Mol. Catal. B: Enzym., 67, 122–128. DOI: 10.1016/j.molcatb.2010.07.016.
  • 21. Sharma A., Bhattacharya A., Singh S., 2009. Purification and characterization of an extracellular carbonic anhydrase from Pseudomonas fragi. Process Biochem., 44, 1293–1297. DOI: 10.1016/j.procbio.2009.07.022.
  • 22. Sharma T., Kumar A., 2021. Efficient reduction of CO2 using a novel carbonic anhydrase producing. Corynebacterium flavescens. Environ. Eng. Res., 26, 200191. DOI: 10.4491/eer.2020.191.
  • 23. Shen T., Li W., Pan W., Lin S., Zhu M., Yu L., 2017. Role of bacterial carbonic anhydrase during CO2 capture in the CO2–H2O–carbonate system. Biochem. Eng. J., 123, 66–74. DOI:10.1016/j.bej.2017.04.003.
  • 24. Sundaram S., Thakur I.S., 2018. Induction of calcite precipitation through heightened production of extracellular carbonic anhydrase by CO2 sequestering bacteria. Bioresour. Technol., 253, 368–371. DOI: 10.1016/j.biortech.2018.01.081.
  • 25. Supuran C.T., 2016. Structure and function of carbonic anhydrases. Biochem. J., 473, 2023–2032. DOI: 10.1042/BCJ20160115.
  • 26. Supuran C.T., Capasso C., 2015. The ”-class carbonic anhydrases as drug targets for antimalarial agents. Expert Opin. Ther. Targets, 19, 551–563. DOI: 10.1517/14728222.2014. 991312.
  • 27. Wiedmann M., Weilmeier D., Dineen S.S., Ralyea R., Boor K.J., 2000. Molecular and phenotypic characterization of Pseudomonas spp. isolated from milk. Appl. Environ. Microbiol.,66, 2085–2095. DOI: 10.1128/AEM.66.5.2085-2095.2000.
  • 28. Wilbur K.M., Anderson N.G., 1948. Electrometric and colourimetric determination of carbonic anhydrase. J. Biol. Chem.,176, 147–154. DOI: 10.1016/s0021-9258(18)51011-5.
  • 29. Yanzhen M., Yang L., Xiangting X., Wei H., 2016. Complete genome sequence of a bacterium Pseudomonas fragi P121, a strain with degradation of toxic compounds. J. Biotechnol., 224, 68–69. DOI: 10.1016/j.jbiotec.2016.03.019.
  • 30. Zhang Y., Zhu J., Hou J., Yi S., Van der Bruggen B., Zhang Y., 2022. Carbonic anhydrase membranes for carbon capture and storage. J. Membr. Sci. Lett., 2, 100031. DOI: 10.1016/j.memlet.2022.100031.
  • 31. Zhang Z., Lian B., Hou W., Chen M., Li X., Li Y., 2011. Bacillus mucilaginosus can capture atmospheric CO2 by carbonic anhydrase. African J. Microbiol. Res., 5, 106–112, 001A48612981. DOI: 10.5897/AJMR10.690.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8f41facf-b6ad-404a-9c60-be17a9595ccf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.