Czasopismo
2018
|
Vol. 66, no. 1
|
109--119
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
Abstrakty
Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
109--119
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
autor
- Department of Range and Watershed Management, Torbat-e-Jam Branch, Islamic Azad University, Torbat-e-Jam, Iran, drmrkhaleghi@gmail.com
autor
- Department of Range and Watershed Management, Arak Branch, Islamic Azad University, Arak, Iran
Bibliografia
- 1. Aberle J, Coleman SE, Nikora VI (2012) Bed load transport by bed form migration. Acta Geophys 60(6):1720–1743. https://doi.org/10.2478/s11600-012-0076-y
- 2. Aich V, Zimmermann A, Elsenbeer H (2014) Quantification and interpretation of suspended-sediment discharge hysteresis patterns: how much data do we need? CATENA 122:120–129. https://doi.org/10.1016/j.catena.2014.06.020
- 3. Arabkhedri M, Noor-Akma I, Mohamad-Roslan MK (2010) Effect of adaptive cluster sampling design on accuracy of SRC estimation. J Hydrol Eng 15(2):142–151. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000171
- 4. Arnborg L, Walker HJ, Peippo J (1967) Suspended Load in the Colville River, Alaska, 1962. Geografiska Ann: Ser A Phys Geogr Landsc Process Essay Geomorphol 49(2–4):131–144. https://doi.org/10.2307/520882
- 5. Asselman NEM (2000) Fitting and interpretation of SRCs. J Hydrol 234(3–4):228–248. https://doi.org/10.1016/S0022-1694(00)00253-5
- 6. Bajcsy P, Li Q, Crowder D, Markus M (2007) A simulation framework for evaluating sampling strategies and determining load accuracies in suspended sediment loads, Union. American Geophysical Union, Fall Meeting 2007 (abstract id H53A-0962)
- 7. Ballio F, Tait S (2012) Sediment transport mechanics. Acta Geophys 60(6):1493–1499. https://doi.org/10.2478/s11600-012-0074-0
- 8. Barzegari F, Yosefi M, Talebi A (2015) Estimating suspended sediment by artificial neural network (ANN), decision trees (DT) and SRC (SRC) models (case study: Lorestan Province, Iran). Civ Eng Infra J 48(2):373–380. https://doi.org/10.7508/ceij.2015.02.011
- 9. Bialik RJ, Czernuszenko W (2013) On the numerical analysis of bed-load transport of saltating grains. Int J Sediment Res 28:413–420
- 10. Bialik RJ, Nikora VI, Rowinski PM (2012) 3D Lagrangian modelling of saltating particles diffusion in turbulent water flow. Acta Geophys 60(6):1639–1660. https://doi.org/10.2478/s11600-012-0003-2
- 11. Bialik RJ, Karpinski M, Rajwa A, Luks B, Rowinski PM (2014) Bed form characteristics in natural and regulated channel: a comparative field study on the Wilga River, Poland. Acta Geophys 62:1413–1434CrossRefGoogle Scholar
- 12. Blanco MLR, Castro MMT, Palleiro L, Castro MTT (2010) Temporal changes in suspended sediment transport in an Atlantic catchment, NW Spain. Geomorphology 123:181–188. https://doi.org/10.1016/j.geomorph.2010.07.015
- 13. Boning WC (2001) Recommendations for use of retransformation methods in Regression, models used to estimate sediment loads. http://water.Usgs.Gov
- 14. Bradu D, Mundlak Y (1970) Estimation in lognormal linear models. J Am Stat Assoc 65(329):198–211. https://doi.org/10.1080/01621459.1970.10481074
- 15. Campagnol J, Radice A, Ballio F (2012) Scale-based statistical analysis of sediment fluxes. Acta Geophys 60(6):1744–1777. https://doi.org/10.2478/s11600-012-0028-6
- 16. Cohn TA, Delong LL, Gilroy EJ, Hirsch RM, Wells DK (1989) Estimating constituent loads. Water Resour Res 25(5):937–942. https://doi.org/10.1029/WR025i005p00937
- 17. Crawford CG (1991) Estimation of suspended and SRCs and mean suspended sediment loads. J Hydrol 129:331–398. https://doi.org/10.1016/0022-1694(91)90057-O
- 18. Degens BP, Donohue RD (2002) Sampling mass loads in rivers—a review of approaches for identifying, evaluating and minimizing estimation errors. Water and Rivers Commission, Water resource technical series No WRT 25, pp 1–43. www.wrc.wa.gov.au/public/feedback/
- 19. Dey S, Das R, Gaudio R, Bose SK (2012) Turbulence in mobile-bed streams. Acta Geophys 60(6):1547–1588. https://doi.org/10.2478/s11600-012-0055-3
- 20. Duan N (1983) Smearing estimate, a nonparametric retransformation method. J Am Stat Assoc 78(383):605–610. https://doi.org/10.1080/01621459.1983.10478017
- 21. Fan X, Shi C, Zhou Y, Shao W (2012) SRCs in the Ningxia-Inner Mongolia reaches of the upper Yellow River and their implications. Quat Int 282:152–162. https://doi.org/10.1016/j.quaint.2012.04.044
- 22. Fang HY, Cai QG, Chen H, Li QY (2008) Temporal changes in suspended sediment transport in a gullied loess watershed: the lower Chabagou Creek on the Loess Plateau in China. Earth Surf Process Landf 33(13):1977–1992. https://doi.org/10.1002/esp.1649
- 23. Fang H, Li QY, Cai QG, Liao YS (2011) Spatial scale dependence of sediment dynamics in a gullied rolling loess region on the Loess Plateau in China. Environ Earth Sci 64(3):693–705. https://doi.org/10.1007/s12665-010-0889-4
- 24. Ferguson RI (1986) River loads underestimated by rating curves. Water Resour Res 22:74–76. https://doi.org/10.1029/WR022i001p00074
- 25. Ferguson RI (1987) Accuracy and precision of methods for estimating river loads. Earth Surf Process Landf 12:95–104. https://doi.org/10.1002/esp.3290120111
- 26. Haynes H, Ockeleford AM, Vignaga E, Holmes WM (2012) A New Approach to define surface/sub- surface transition in gravel beds. Acta Geophys 60(6):1589–1606. https://doi.org/10.2478/s11600-012-0067-z
- 27. Holtschlag DJ (2001) optimal estimation of suspended-sediment concentrations in streams. Hydrol Process 15:1133–1156. https://doi.org/10.1002/hyp.207
- 28. Horowitz AJ (2003) An evaluation of SRCs for estimating suspended sediment concentrations for subsequent flux calculations. Hydrol Process 17:387–3409. https://doi.org/10.1002/hyp.1299
- 29. Hu BQ, Wang HJ, Yang ZS, Sun XX (2011) Temporal and spatial variations of SRCs in the Changjiang (Yangtze River) watershed and their implications. Quat Int 230(1–2):34–43. https://doi.org/10.1016/j.quaint.2009.08.018
- 30. Hudson PF (2003) Event sequence and sediment exhaustion in the lower Panuco Watershed, Mexico. Catena 52(1):57–76. https://doi.org/10.1016/S0341-8162(02)00145-5
- 31. Iadanza C, Napolitano F (2006) Sediment transports time series in the Tiber River. Phys Chem Earth Parts A/B/C 31(18):1212–1227. https://doi.org/10.1016/j.pce.2006.05.005
- 32. Jain S (2001) Development of Integrated SRCs Using ANNs. J Hydraul Eng 127(1):30–37. https://doi.org/10.1061/(ASCE)0733-9429(2001)127:1(30)
- 33. Jansson MB (1996) Estimating a SRCs of the Reventon river at Palomo using logged mean loads within discharge classes. J Hydrol 183(4):227–241. https://doi.org/10.1016/0022-1694(95)02988-5
- 34. Jones KR, O Berney DP, Barret EC (1981) Arid zone hydrology for agricultural development, FAO Irrigation and Drainage Paper, 37, 271. ISBN 10: 925101079X/ ISBN 13: 9789251010792
- 35. Lecce SA, Pease PP, Gares PA, Wang JY (2006) Seasonal controls on sediment delivery in a small coastal plain watershed, North Carolina, USA. Geomorphology 73(3–4):246–260. https://doi.org/10.1016/j.geomorph.2005.05.017
- 36. Leopold LB, Maddock T (1953) The hydraulic geometry of stream channels and some physiographic implications. USGS professional paper No. 252, Hydrodynamics, pp 1–57
- 37. Link O, Gonzalez C, Maldonado M, Escauriaza C (2012) Coherent structure dynamics and sediment particle motion around a cylindrical pier in developing scour holes. Acta Geophys 60(6):1689–1719. https://doi.org/10.2478/s11600-012-0068-y
- 38. Liu XX, Chiew YM (2012) Effect of seepage on initiation of cohesionless sediment transport. Acta Geophys 60(6):1778–1796. https://doi.org/10.2478/s11600-012-0043-7
- 39. Lloyd CEM, Freer JE, Johnes PJ, Collins AL (2016) Using hysteresis analysis of high-resolution water quality monitoring data, including uncertainty, to infer controls on nutrient and sediment transfer in catchments. Sci. Total Environ 543(A):388-404. https://doi.org/10.1016/j.scitotenv.2015.11.028
- 40. Marttila H, Kleve B (2010) Dynamics of erosion and suspended sediment transport from drained peat-land forestry. J Hydrol 388(3–4):414–425. https://doi.org/10.1016/j.jhydrol.2010.05.026
- 41. Meade RH, Yuzyk TR, Day TJ (1990) Movement and storage of sediment in rivers of the United States and Canada. Surface Water Hydrol Boulder Colorado 3:255–280. https://doi.org/10.1007/978-94-009-3071-1_8
- 42. Morehead MD, Syvitski JPM, Hutton EWH, Peckham SD (2003) Modeling the temporal variability in the flux of sediment from un-gauged river watersheds. Glob Planet Change 39(1–2):95–110. https://doi.org/10.1016/s0921-8181(03)00019-5
- 43. Moreno PA, Bombardelli FA (2012) 3D Numerical simulation of particle-particle collisions in saltation mode near stream beds. Acta Geophys 60(6):1661–1688. https://doi.org/10.2478/s11600-012-0077-x
- 44. Nadal-Romero E, Regüés D, Latron J (2008) Relationships among rainfall, runoff, and suspended sediment in a small catchment with badlands. CATENA 74(2):127–136. https://doi.org/10.1016/j.catena.2008.03.014
- 45. Nu-Fang F, Zhi-Huaa S, Lu L, Cheng J (2011) Rainfall, runoff, and suspended sediment delivery relationships in a small agricultural watershed of the Three Gorges area, China. Geomorphology 135(1–2):158–166. https://doi.org/10.1016/j.geomorph.2011.08.013
- 46. Phillips JM, Webb BW, Walling DE, Leeks GJL (1999) Estimating the suspended sediment loads of rivers in the LOIS study area using infrequent samples. Hydrol Process 13:1035–1050. https://doi.org/10.1002/(SICI)1099-1085(199905)
- 47. Preston SV, Bierman J (1989) An evaluation of methods for the estimation of tributary mass loads. Water Resour Res 25(6):1379–1390. https://doi.org/10.1029/WR025i006p01379
- 48. Singh A, Guala M, Lanzoni S, Foufoula-Georgio E (2012) Bedform effect on the reorganization of surface and subsurface grain size distribution in gravel bedded channels. Acta Geoph. 60(6):1607–1638. https://doi.org/10.2478/s11600-012-0075-z
- 49. Syvitski JPM, Morehead MD, Bahr DB, Mulder T (2000) Estimating fluvial sediment transport: the rating parameters. Water Resour Res 36(9):2747–2760. https://doi.org/10.1029/2000WR900133
- 50. Szilo J, Bialik RJ (2017) Bed load transport in two creeks at the ice-free area of the Baranowski Glacier, King George Island, West Antarctica. Pol Polar Res 38(1):21–39. https://doi.org/10.1515/popore-2017-0003
- 51. Thomas RB (1985) Estimating total suspended sediment yield with probability sampling. Water Resour Res 21:1381–1388. https://doi.org/10.1029/WR021i009p01381
- 52. Waling DE (1977) Assessing the accuracy of suspended SRCs for a small watershed. Water Resour Res 13:531–538. https://doi.org/10.1029/WR013i003p00531
- 53. Walling DE (1974) Suspended sediment and solute yields from a small catchment prior to urbanization. In: Gregory KJ, Walling DE (eds), Fluvial processes in instrumented watersheds, Inst. Br. Geogr., London Inst Br Geogr Spec Publ 6:169–192
- 54. Walling DE, Teed A (1971) A simple pumping sampler for research into suspended sediment transport in small catchments. J Hydrol 13:325–337CrossRefGoogle Scholar
- 55. Walling DE, Webb BW (1981) The reliability of suspended sediment load data. In: Walling D, Tacconi P (eds) Erosion and sediment transport measurement, IAHS Publication no. 133. IAHS Press, Wallingford, pp 177–194Google Scholar
- 56. Wang HJ, Yang ZS, Wang Y, Saito Y, Liu JP (2008) Reconstruction of sediment flux from the Changjiang (Yangtze River) to the sea since the 1860s. J Hydrol 349(3–4):318–332. https://doi.org/10.1016/j.jhydrol.2007.11.005CrossRefGoogle Scholar
- 57. Williams GP (1989) Sediment concentrations versus water discharge during single hydrologic events in rivers. J Hydrol 111:89–106. https://doi.org/10.1016/0022-1694(89)90254-0CrossRefGoogle Scholar
- 58. Xu JX (1999) Erosion caused by hyper-concentrated flow on the Loess Plateau of China. CATENA 36:1–9. https://doi.org/10.1016/S0341-8162(99)00009-0CrossRefGoogle Scholar
- 59. Xu JX (2004) Hyper-concentrated flows in the slope-channel systems in gullied areas on the Loess Plateau, China. Geografiska Ann Ser A Phys Geogr 86:349–366. https://doi.org/10.1111/j.0435-3676.2004.00237.xCrossRefGoogle Scholar
- 60. Yang GF, Chen ZY, Yu F, Wang Z, Zhao Y, Wang Z (2007) Sediment rating parameters and their implications: Yangtze River, China. Geomorphology 85(3–4):166–175.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8f0e7506-e3cb-48c4-b118-27625dbffe11