Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | No. 4 | 16--27
Tytuł artykułu

Achmatowicz rearrangement - 50 years of application

Treść / Zawartość
Warianty tytułu
PL
Pół wieku zastosowań przegrupowania Achmatowicza
Języki publikacji
EN
Abstrakty
EN
Chemical sciences proved instrumental in formulating theories and in providing materials which are crucial for development of contemporary technical civilization. Methods of chemical synthesis, necessary for supply of materials designed for specific technical needs have attained efficiency, which allows preparation of even most complicated molecules encountered in Nature. Academic stereo- and enantioselective total syntheses of natural products (such as: alkaloids, peptides, isoprenoids, lipids, carbohydrates and phenolics) are generally regarded as the top achievements of XX century organic chemistry. Along the line, this paper recalls ingenious project of total synthesis from simple furan derivatives, of pyranes and pyranosides, basic stuff of natural carbohydrates, suitably functionalized for a stepwise conversion into variety of sugar structures. The project designed in the Institute of Organic Chemistry, Polish Academy of Sciences in Warsaw, began its proof of principle experimental validation in 1970. Its success led to a widespread application of what is presently known as the Achmatowicz reaction/Achmatowicz rearrangement for syntheses of simple and complex, oxygen and nitrogen heterocyclic systems, including great variety of natural products.
PL
Nauki chemiczne odegrały kluczową rolę w kształtowaniu zarówno podstaw teoretycznych jak i zaplecza materialnego współczesnej cywilizacji przemysłowej. Metody syntezy chemicznej, niezbędne do wytwarzania materiałów technicznych o pożądanych właściwościach, osiągnęły sprawność pozwalającą na otrzymanie związków odpowiadających cząsteczkom organicznym pochodzenia biologicznego, o najwyższym stopniu złożoności. Syntezy totalne, stereo- i enancjoselektywne, związków naturalnych (alkaloidów, peptydów, izoprenoidów, lipidów, węglowodanów i związków fenolowych) uznano za najważniejsze osiągnięcia klasycznej chemii organicznej. Poniżej przedstawiamy genezę i rozwój projektu totalnej syntezy z prostych pochodnych furanu, wielofunkcyjnych piranów i piranoz - zasadniczej heterocyklicznej sześcioczłonowej struktury pierścieniowej naturalnych cukrów, glikozydów i ich oligomerycznych pochodnych, opracowanego w Instytucie Chemii Organicznej PAN w Warszawie, który w 1970-tym roku osiągnął zrealizowaną z powodzeniem fazę weryfikacji doświadczalnej. Osiągnięcie, które zyskało nazwę reakcji (przegrupowania) Achmatowicza, stanowi obecnie jedno z popularniejszych narzędzi stereokontrolowanej syntezy tlenowych i azotowych związków heterocyklicznych.
Wydawca

Rocznik
Tom
Strony
16--27
Opis fizyczny
Bibliogr. 122 poz., rys.
Twórcy
  • Professor Emeritus, Pharmaceutical Research Institute, Rydygiera 8, 01-793 Warszawa, grynicz@gmail.com
  • Department of Pharmaceutical Sciences, Wilkes University, Wilkes-Barre PA 18766, USA
Bibliografia
  • [1] A.K. Wróblewski, Pozycja nauki polskiej w rankingach międzynarodowych, (2013) Studia BAS, 35: 89-106.
  • [2] Nicolaou K.C., Sorensen E.J. Classics in Total Synthesis: Targets, Strategies, Methods, Wiley-VCH (1996).
  • [3] K. C. Nicolaou, E. J. Sorensen, N. Winssinger. (1998) The Art and Science of Organic and Natural Products, J. Chem. Educ. 75:1226-1258.
  • [4] Nicolaou K.C., Snyder S.A. Classics in Total Synthesis II: More Targets, Strategies, Methods, Wiley-VCH (2003).
  • [5] Nicolaou K.C., Chen J.S. Classics in Total Synthesis III: Further Targets, Strategies, Methods, Wiley-VCH (2011).
  • [6] Nicolaou K.C., Hale C.R.H., Nilewski C., Ioannidou H.A. Constructing Molecular Complexity and Diversity: Total Synthesis of Natural Products of Biological and Medicinal Importance, (2012) Chem. Soc. Rev. 41: 5185-5238.
  • [7] The Comprehensive e-Book of Named Organic Reactions and Their Mechanisms. By Elbertus Kruiswijk. The Chemical Bookstore: Aberaman, U.K. (2005). http://www.namedorganicreactions.co.uk.
  • [8] O. Achmatowicz Jr., P . Bukowski., B. Szechner, Z. Zwierzchowska, A. Zamojski. Synthesis of methyl 2, 3-dideoxy-DL-alk-2- enopyranosides from furan compounds: A general approach to the total synthesis of monosaccharides, Tetrahedron, (1971), 27:1973-1996.
  • [9] S.O. Bajaj, R. Farnsworth, G.A. O’Doherty, Enantioselective Synthesis of α- and β- Boc-protected 6-hydroxy-pyranones: Carbohydrate Building Blocks, Org. Synth., (2014), 91:338-355.
  • [10] X. Yu, G.A. O’Doherty, 1-(2-Furanyl)-1,2-ethanediol, Encyclopedia of Reagents for Organic Synthesis, (2009), https://doi.org/10.1002/047084289X.rn01077, Print ISBN: 9780471936237| Online ISBN: 9780470842898 DOI: 10.1002/047084289X
  • [11] P. Merino, T. Tejero, J.I. Delsoa, R. Matute, Furan oxidations in organic synthesis: recent advances and applications, Curr. Org. Chem., (2007), 11:1076-1091.
  • [12] T. Montagnon, D. Kazantzakis, M. Triantafyllakis, M. Stratakis G. Vassilikogiannakis, Furans and singlet oxygen - why there is more to come from this powerful partnership, Chem. Commun., (2014), 50: 15480-15498.
  • [13] D. Noutsias, I. Alexopoulou, T. Montagnon, G. Vassilikogiannakis, Using water, light, air and spirulina to access a wide variety of polyoxygenatedcompounds, Green Chem., (2012), 14:601-604.
  • [14] M.J. Palframan, G. Pattenden. The versatility of furfuryl alcohols and furanoxonium ions in synthesis, Chem Commun., (2014), 50:7223-7242.
  • [15] J. Deska, D. Thiel, E. Gianolino, The Achmatowicz rearrangement-oxidative ring expansion of furfuryl alcohols, Synthesis, (2015), 47:3435-3450.
  • [16] Z. Li, R. Tong, Catalytic, environmentally friendly protocol for Achmatowicz rearrangement, J. Org. Chem., (2016), 81:4847-4855.
  • [17] F. Blume, P. Sprengart, J. Deska, Lipase-induced oxidative furan rearrangements, Synlett, (2018), 29:1293-1296.
  • [18] D. Thiel, F. Blume, C. Jäger, J. Deska, Chloroperoxidasecatalyzed Achmatowicz rearrangements, Eur. J. Org. Chem. (2018), 2018:2717-2725.
  • [19] Essentials of Glycobiology, 2nd Ed., (A.Varki, R.D. Cummings, J.D. Esko, H.H. Freeze, P. Stanley, C. R. Bertozzi, G.W. Hart, M.E. Etzler. Eds.), Cold Spring Harbor Laboratory Press, New York, 2009.
  • [20] Z. J. Witczak. Carbohydrate Therapeutics: New Developments and Strategies, (2006), Carbohydrate Drug Design, Chapter 2 pp 25-46, ACS Symposium Series Vol. 932.
  • [21] A. Fernandez-Tejada, F.J. Canada, J. Jimenez-Barbero. Recent developments in synthetic carbohydrate-based diagnostics, vaccines, and therapeutics. Chem. Eur. J., (2015), 21: 10616-10628.
  • [22] Carbohydrates in Drug Design and Discovery, (RSC Drug Discovery Series No. 43 ; J. Jimenez-Barbero, F.J. Canada, S. Martin-Santamaria, Eds.) RSC Cambridge UK (2015).
  • [23] H. Kunz, Emil Fischer - unequalled classicist, master of organic chemistry research, and inspired trailblazer of biological chemistry, Angew. Chem. Int. Ed., (2002), 41:4439-4451.
  • [24] A. Zamojski, A. Banaszek, G. Grynkiewicz, The synthesis of sugars from non-carbohydrate substrates, Adv. Carbohydr. Chem. Biochem., (1982), 40: 1-129.
  • [25] T. Hudlicky, D.A. Entwistle, K.K. Pitzer, A.J. Thorpe, Modern methods of monosaccharide synthesis from noncarbohydrate sources, Chem. Rev. (1996), 96:1195-1220.
  • [26] P. Vogel, I. Robina. De novo synthesis of monosaccharides. In: Glycoscience. Fraser-Reid, B.; Tatsuta, K.; Thiem, J. (Eds.), Springer Verlag Berlin (2008), 857-956.
  • [27] J. Młynarski, B. Gut, Organocatalytic synthesis of carbohydrates, Chem. Soc. Rev., (2012) 41:587-596.
  • [28] Aljahdali, A.Z.; Shi, P.; Zhong, Y.; O’Doherty, G.A. De novo asymmetric synthesis of the pyranoses: from monosaccharides to oligosaccharides, Adv. Carbohydr. Chem. Biochem., (2013), 69:55-123.
  • [29] O. Achmatowicz Jr., R. Bielski, Stereoselective Total synthesis of methyl D- and L- glucopyranosides, Carbohydr. Res., (1977), 55:165-176.
  • [30] O. Achmatowicz Jr., R. Bielski, Total synthesis of monosaccharides from furan compounds. Synthesis of methyl N-acetyl-2,4,6-tri-O-acetyl-α-L-kanosaminide and methyl α-L-mannopyranoside. Roczniki Chem., (1977); 51:1389-1396.
  • [31] O. Achmatowicz Jr., P. Bukowski, Reduction of methyl 2,3-dideoxy-DL-pent-2-enopyranosid-4-ulose with sodium borohydride and lithium aluminum hydride, Roczniki Chem., (1973), 47:99-114.
  • [32] O. Achmatowicz Jr., P. Bukowski, Total synthesis of monosaccharides. Synthesis of methyl DL-pentopyranosides with α- and β- lyxo- , β-ribo- , α-xylo- and α-arabinoconfiguration, Can. J. Chem., (1975), 53:2524-2530.
  • [33] O. Achmatowicz Jr., B. Szechner, Total synthesis of racemic 6-deoxyhexoses. Part I. Synthesis of methyl 6-deoxy-α-DLmanno-, β-DL-allo-, α-DL-talo- and α-DL-gulohexopyranosides, Roczniki Chem., (1975), 49:1715-1724.
  • [34] O. Achmatowicz Jr., B. Szechner, Total synthesis of racemic 6-deoxyhexoses. Part II. Synthesis of methyl 6-deoxy-α-DL-altro, α-DL-gluco- , α-DL-galacto-, and α-DLidohexopyranosides. Roczniki Chem., (1976), 50:729-736.
  • [35] O. Achmatowicz Jr., B. Szechner, Total synthesis of racemic methyl 2,3-anhydro-6-deoxyhexopyranosides. Carbohydr. Res., (1976), 50:22-33.
  • [36] O. Achmatowicz Jr., R. Bielski, P. Bukowski, Total synthesis of monosaccharides. Synthesis of racemic methyl α-manno, α-altro, and β-allo-pyranosides from 1-(2-furyl)-1, 2-dihydroxyethane, Rocz. Chem., (1976), 50:1535-1543.
  • [37] O. Achmatowicz, M.H. Burzyńska, Stereospecific synthesis of methyl D,L-hex-2-ulopyranosides from furan compounds, Tetrahedron, (1982), 38:3507-3513.
  • [38] O. Achmatowicz Jr., M.H. Burzyńska, Total synthesis of highercarbon sugars: synthesis of methyl 3,4,5-tri-O-acetyl-1,7-diO-benzyl-α-DL-gluco-hept-2-ulopyranoside. Carbohydr. Res., (1985), 141:67-76.
  • [39] O. Achmatowicz Jr., G. Grynkiewicz, Stereoselective synthesis of 2,3-O-isopropylidene-DL-ribofuranose and methyl DL-ribofuranoside from furfuryl alcohol. Carbohydr. Res., (1977), 54:193-198.
  • [40] O. Achmatowicz, G. Grynkiewicz, B. Szechner, Stereoselective synthesis of methyl β-D,L-novioside. Tetrahedron, (1976), 32:1051-1054.
  • [41] O. Achmatowicz Jr., G. Grynkiewicz, An approach to stereoselective syntheses of 6-substituted hexoses. Synthesis of racemic methyl 2,3,4-tri-O-acetyl-6-deoxy-6-nitro and 6-deoxy-6-acetamido-α-mannopyranosides, Rocz. Chem., (1976), 50:719-728.
  • [42] B. Szechner, O. Achmatowicz, A total synthetic route to enantiomerically pure D- and L-aminooctoses: stereocontrolled synthesis of methyl α-D-lincosaminide, J. Carbohydr. Chem., (1992), 11:401-406.
  • [43] G. Grynkiewicz, J.W. Krajewski, Z. Urbańczyk-Lipkowska, P. Gluziński, A. Zamojski, O- Versus C- alkylation during reactions of 6-benzyloxy-2H-pyran-3(6H)-one with phenols. Molecular structure of a new benzofuran derivative, Polish J. Chem., (1979), 53:2025-2028.
  • [44] G. Grynkiewicz, A. Zamojski, Electrophilic substitution of aromatic compounds by unsaturated sugar derivatives. Z. Naturforsch., Sect. B, (1980), 35:1024-1027.
  • [45] G. Grynkiewicz, A. Zamojski, The Synthesis of 6-Hydroxy- 2H-pyran-3(6H)-onyl-hexoses, potential precursors of disaccharides, Synth. Commun., (1978), 8:491-496.
  • [46] G. Grynkiewicz, Synthesis of some disaccharides containing pent-2-enopyranose residues. Carbohydr. Res., (1980), 80:53-62.
  • [47] G. Grynkiewicz, Achmatowicz rearrangement derived synthons, and their bio-inspired chemistry, Chapt. 2 In: In Advances in Organic Synthesis; (Atta-ur-Rahman, Ed.; Bentham Science Publishers: Sharjah, UAE), (2018); Vol. 10, pp 41-98.
  • [48] W. Szeja, G. Grynkiewicz, Syntheses of asymmetrically substituted pyrans of natural origin, In: Natural Products as Source of Molecules with Therapeutic Potential: Research & Development, Challenges and Perspectives; (Filho, V.C., Ed.; Springer: Cham, CH) (2018); pp 233-307.
  • [49] M. Zhou, G.A. O’Doherty, De novo approach to 2-deoxy-β-glycosides: asymmetric syntheses of digoxose and digitoxin, J. Org. Chem., (2007), 72:2485-2493.
  • [50] H.-Y.L. Wang, W. Xin, M. Zhou, T. Stueckle, Y. Royanasakul, G.A. O’Doherty, Stereochemical survey of digitoxin monosaccharides, ACS Med. Chem. Lett., (2011), 2:73-78.
  • [51] H.-Y.L. Wang, Y. Royanasakul, G.A. O’Doherty, Synthesis and evaluation of the α-D-/α-L-rhamnosyl and amicetosyl digitoxygenin oligomers as antitumor agents, ACS Med. Chem. Lett., (2011), 2:264-269.
  • [52] R.S. Babu, G.A. O’Doherty, A palladium-catalyzed glycosylation reaction: the de novo synthesis of natural and unnatural glycosides, J. Am. Chem. Soc., (2003), 125:12406-12407.
  • [53] R.S. Babu, Zhou, G.A. O’Doherty, De novo synthesis of oligosaccharides using palladium-catalyzed glycosylation reaction, J. Am. Chem. Soc., (2004), 126:3428-3429.
  • [54] M.D. Burke, E.M. Berger, S.L. Schreiber, A synthesis strategy yielding skeletally diverse small molecules combinatorially, J. Am. Chem. Soc., (2004) 126:14095-14104.
  • [55] E.A. Couladouros, A.T. Strongilos, Generation of libraries of pharmacophoric structures with increased complexity and diversity by employing polymorphic scaffolds, Angew. Chem. Int. Ed., (2002), 41:3677-3680.
  • [56] A.K. Ghosh, M. Brindisi, Achmatowicz reaction and its application in the syntheses of bioactive molecules, RSC Adv., (2016), 6:111564-111598.
  • [57] P.S. Mahajan, V.T. Humne, S.B. Mhaske, Achmatowicz reaction: a versatile tool in bioactive natural products synthesis, Curr. Org. Chem., (2017), 21:503-545.
  • [58] T. Taniguchi, K. Nakamura, K. Ogasawara, Non-carbohydrate route to levoglucosenone and its enantiomer employing asymmetricdihydroxylation, Synlett, (1996), 1996:971-972.
  • [59] T. Taniguchi, K. Nakamura, K. Ogasawara, Back to the sugars: a new enantio- and diastereocontrolled route to hexoses from furfural, Synthesis, (1999), 1999:341-354.
  • [60] T.C. Coombs, M.D. Lee IV, H. Wong, M. Armstrong, B. Cheng, et al., Practical, scalable, high-throughput approaches to η3-pyranyl and η3-pyridinyl organometallic enantiomeric scaffolds using the Achmatowicz reaction, J. Org. Chem., (2008), 73:882-888.
  • [61] H.-Y. Wang, K. Yang, S.R. Bennett, S. Guo, W. Tang, Iridiumcatalyzed dynamic kinetic isomerization: expedient synthesis of carbohydrates from Achmatowicz rearrangement products, Angew. Chem. Int. Ed., (2015), 54:8756-8759.
  • [62] Z. Zhu, H.-Y. Wang, C. Simmons, P.-S. Tseng, X. Qiu et al., Iridium-catalyzed dynamic kinetic stereoselective allylic etherification of Achmatowicz rearrangement products, Adv. Synth. Catal., (2018), 360:595-599.
  • [63] G. Grynkiewicz, O. Achmatowicz, H. Bartoń, Reactivity of 6-methoxy-3,6-dihydro-2H-pyran-3-one in Michael addition, Rocz. Chem., (1977), 51:1663 -1674.
  • [64] J. Knol, J.F.G.A. JansenF. Van Bolhuis, B.L. Feringa, Asymmetric Diels-Alder reactions and Michael type additions with 6 (R) -3’ (R) - pantolactone substituted 2H-pyran-3(6H)- one, Tetrahedron Lett., (1991), 5):7465-7468.
  • [65] N.L. Holder, The chemistry of hexenuloses, Chem. Rev., (1982), 82:287-332.
  • [66] H.-Y. Wang, K. Yang, D. Yin, C. Liu, D.A. Glazier, W. Tang, Chiral catalyst-directed dynamic kinetic diastereoselective acylation of lactols for de novo synthesis of carbohydrates, Org. Lett., (2015), 17:5272-5275.
  • [67] C. Zhao, F. Li, J. Wang, N-Heterocyclic carbene catalyzed dynamic kinetic resolution of pyranones, Angew Chem Int Ed., (2016), 55:1820-1824.
  • [68] S. Yang, X. Fang, Kinetic resolutions enabled by N-heterocyclic carbene catalysis, Curr. Org. Synth., (2017), 14:654-664.
  • [69] H.-Y. Wang, C.J. Simmons, Y. Zhang, A.M. Smits, P.G. Balzer et al., Chiral catalyst-directed dynamic kinetic diastereoselective acylation of anomeric hydroxyl groups and a controlled reduction of the glycosyl ester products, Org. Lett., (2017), 19:508-511.
  • [70] M. Cuccarese, H.-Y. L. Wang, G.A. O’Doherty, Application of the Wharton rearrangement for the de novo synthesis of pyranosides with ido, manno, and colito stereochemistry, Eur. J. Org. Chem., (2013), 3067-3075.
  • [71] O. Achmatowicz Jr., B. Szechner, Tetrahedron Lett., Reductive rearrangement of 2,3-unsaturated methyl pyranosides to 3-deoxy glycals, (1972), 13:1205-1208.
  • [72] O. Achmatowicz, B. Szechner, Reductive rearrangement of 4-C-substituted hex-2-enopyranosides. Synthesis of 3-deoxy glycals, Tetrahedron Lett., (1997), 38:4701-4704.
  • [73] Z. Li, R. Tong, Asymmetric total syntheses of the trans-2-aryl- 6-alkyltetrahydropyrans Diospongin B and Parvistones D and E from a common precursor, Synthesis, (2016), 48:1630-1636.
  • [74] S. Tang, Q. Zheng, D.C. Xiong, S. Jiang, Q. Li, X.S. Ye, Stereocontrolled synthesis of 2-deoxy-C-glycopyranosyl arenes using glycals and aromatic amines, Org. Lett., (2018), 20:3079-3082.
  • [75] F. Otte, B. Schmidt, Matsuda–Heck arylation of glycals for the stereoselective synthesis of aryl C-glycosides, J. Org. Chem., (2019), 84:14816-14829.
  • [76] M.W. Liaw, W.F. Cheng, R. Tong, C-Aryl glycosylation: palladium-catalyzed aryl-allyl coupling of Achmatowicz rearrangement products with arylboronic acids, J. Org. Chem., (2020), 85:6663-6674.
  • [77] McKay MJ, Nguyen HM. Recent Advances in Transition MetalCatalyzed Glycosylation, ACS Catal (2012), 2:1563-1595.
  • [78] Li X; Zhu J Glycosylation via Transition-Metal Catalysis: Challenges and Opportunities. Eur. J. Org. Chem., (2016), 2016:4724-4767.
  • [79] H. Pellisier recent developments in the [5 + 2] cycloaddition, Adv. Synth. Catal., (2011), 353:189-218.
  • [80] K.E.O. Ylijoki, J.M. Stryker, [5 + 2] Cycloaddition reactions in organic and natural product synthesis, Chem. Rev., (2013), 113:2244-2266.
  • [81] J. Yu, H. Ma, H. Yao, H. Cheng, R. Tong, Diastereoselective and regiodivergent oxa-[3 + 2] cycloaddition of Achmatowicz products and cyclic 1,3-dicarbonyl compounds, Org. Chem. Front., (2016), 3:714-719.
  • [82] M.D. Lewis, J.K. Cha, Y. Kishi, Highly Stereoselective Approaches to α- and β-C-Glycopyranosides, J. Am. Chem. Soc., (1982), 104:4976-4978.
  • [83] Honda T., Investigation of innovative synthesis of biologically active compounds on the basis of newly developed reactions, Chem. Pharm. Bull., (2012), 60:687-705.
  • [84] Honda T., N. Sano, Kanai K., Concise enantioselective synthesis of (+)-asperlin by application of the Sharpless kinetic resolution to 2-furylmethanol derivatives bearing alkenyl moiety on the side chain, Heterocycles, (1995), 41:425-429.
  • [85] B. Chen, X. Liu, Y.-J. Hu, D.-M. Zhang, L. Deng et al., Enantioselective total synthesis of (-)-colchicine, (+)-demecolcinone and metacolchicine: determination of the absolute configurations of the latter two alkaloids , Chem. Sci., (2017), 8:4961-4966.
  • [86] S.F. Martin, D.E. Guinn, Stereoselective synthesis of (+)-PrelogDjerassi lactone from furanoid intermediates, J. Org. Chem., (1987), 52:5588-5593.
  • [87] S.F. Martin, D.E. Guinn, Prelog-Djerassi lactonic acid. A target for design and development of stereoselective synthetic methods, Synthesis, (1991), 1991:245-262.
  • [88] H. Guo, G.A. O’Doherty, De novo asymmetric synthesis of D- and L-swainsonine, Org. Lett., (2006), 8:1609-1612.
  • [89] M. Mondon, J.P. Gesson, Asymmetric synthesis of styryllactones, Curr. Org. Synth., (2006), 3:41-75.
  • [90] Z. Li, T.F. Leung, R. Tong, Total syntheses of (+/-) musellarins A-C, Chem Commun., (2014), 50:10990.
  • [91] Z. Li, F.C.F. Ip, N.Y. Ip, R. Tong, Highly trans-selective arylation of Achmatowicz rearrangement products by reductive γ-deoxygenation and Heck-Matsuda reaction: asymmetric total synthesis of (-)-Musellarins A-C and their analogues, Chem. Eur. J., (2015), 21:11152-11157.
  • [92] A.T. A.T. Herrmann, S.R. Martinez, A. Zakarian, A concise asymmetric total synthesis of (+)-brevisamide, Org. Lett., (2011), 13:3636-3639.
  • [93] K.C. Nicolau, Q. Kang, S.Y. Ng, D.Y.K. Chen, Total synthesis of engelrin A, J. Am. Chem. Soc., (2010), 132:8219-8222.
  • [94] R.H. Pouwer, J.-A. Richard, C.-C. Tseng, D.Y.-K. Chen, Chemical synthesis of the engelrins, Chem. Asian J., (2012), 7:22-35.
  • [95] R.A. Jones, M.J. Krische, Asymmetric total synthsesis of the iridoid β-glucoside (+)-geniposide via phosphine organocatalysis, Org Lett., (2009), 11:1849-1851.
  • [96] M.H. Haukaas, G.A. O’Doherty, Synthesis of D- and LDeoxymannojirimycin via an asymmetric aminohydroxylation of vinylfuran, Org. Lett., (2001), 3:401-404.
  • [97] C.A. Leverett, M.P. Cassidy, A. Padwa, Application of the azaAchmatowicz oxidative rearrangement for the stereoselective synthesis of the Cassia and Prosopis alkaloid family, J. Org. Chem., (2006), 71:8591-8601.
  • [98] W.-S. Zhou, Z.-H. Lu, Y.-M. Xu, L.-X. Liao, Z.-M. Wang, Synthesis of optically active α-furfuryl amine derivatives and application to the asymmetric syntheses. Tetrahedron (1999), 55 , 11959-11983.
  • [99] B. Mucha, H. Martin, R. Hoffmann, Improved procedure for the synthesis of 6-alkoxy-2,3-dihydro-6H-pyran- 3ones (2,3-dideoxy-DL-pent-2-enopyranos-4-uloses). Neat conversion into polyfunctionalized cyclopentenones, Tetrahedron Lett., (1989), 30:4489-4492.
  • [100] H.C. Kolb, H. Martin, R. Hoffmann, A total synthesis of racemic and optically active terrein (trans-4, 5-dihydroxy-3-[(E)-1- propenyl]-2-cyclopenten-1-one) , Tetrahedron: Asymmetry, (1990), 1:237-250.
  • [101] C. Jimenez, Marine natural products in medicinal chemistry, ACS Med. Chem. Lett., (2018), 9:959-961.
  • [102] F. Li, Y. Wang, D. Li, Y. Chen, Q.P. Dou, Are we seeing a resurgence in the use of natural products for new drug discovert?, Exp. Opin. Drug Discov., (2019), 14:417-420.
  • [103] K.C. Nicolaou, R.J. Aversa, Maitotoxin: an inspiration for synthesis. Isr. J. Chem., (2011), 51:359-377.
  • [104] K.C. Nicolaou, M.O. Frederick, R.J. Aversa, The continuing saga of the marine polyether biotoxins, Angew. Chem. Int. Ed., (2008), 47:7182-7225.
  • [105] K.C. Nicolaou, R.J. Aversa, J. Jin, F. Rivas, Synthesis of the ABCDEFG ring system of maitotoxin, J. Am. Chem. Soc., (2010), 132:6855-6861.
  • [106] A.S. Makarov, M.G. Uchuskin, I.V. Trushkov, Furan oxidation reactions in the total synthesis of natural products, Synthesis, (2018), 50:3059-3086.
  • [107] G. Zhao, R. Tong, A solvent-free catalytic protocol for the Achmatowicz rearrangement, Green Chem,. (2019), 21:64-68.
  • [108] G. Zhao, R. Tong, Silica gel enables Achmatowicz rearrangement with KBr/oxone under “anhydrous” condition for one-pot functionalization, Tetrahedron, (2019), 75:1669-1675.
  • [109] R.J. Ferrier, J.O. Hoberg, Synthesis and reactions of unsaturated sugars, Adv. Carbohydr. Chem. Biochem., (2003), 58:55-119.
  • [110] N.M. Xavier, A.P. Rauter, Sugars containing α,β-unsaturated carbonyl systems: synthesis and their usefulness as scaffolds in carbohydrate chemistry, Carbohydr. Res., (2008), 343:1523-1539.
  • [111] B. Fraser-Reid, J.C. Lopez, Unsaturated sugars: a rich platform for methodological and synthetic studies, Curr. Org. Chem., (2009), 13:532-553.
  • [112] S. Kusumi, K. Sasaki, S. Wang, T. Watanabe, D. Takahashi, K. Toshima, Effective and chemoselective glycosylations using 2,3-unsaturated sugars, Org. Biomolecul. Chem., (2010), 8:3164-3178.
  • [113] A.M. Gómez, F. Lobo, C. Uriel, J.C. López, Recent developments in the Ferrier rearrangement, Eur. J. Org. Chem. (2013), 2013:7221-7262.
  • [114] L.V.R. Reddy, V. Kumar, R. Sagar, A.K. Shaw, Glycal-derived δ-hydroxy α, β-unsaturated aldehydes (Perlin aldehydes): versatile building blocks in organic synthesis, Chem. Rev., (2013), 113:3605-3631.
  • [115] G. Grynkiewicz, W. Szeja, P. Krzeczyński, A. Rusin, Hexenoses in design of glycoconjugates – from chemistry to function, Chem. & Biol. Interface, (2014), 4:301-320.
  • [116] A.M. Gómez, F. Lobo, S. Miranda, J.C. López, A survey of recent synthetic applications of 2,3-dideoxy-hex-2-enopyranosides, Molecules, (2015), 20:8357-8394.
  • [117] X. Liu, P. Carr M.G. Gardiner, M.G. Banwell, A.H. Elbanna et al., Levoglucosenone and its pseudoenantiomer isolevoglucosenone as scaffolds for drug discovery and development, ACS Omega, (2020), 5:13926-13939.
  • [118] H. Guo, G.A. O’Doherty, De novo asymmetric synthesis of the anthrax tetrasaccharide by a palladium-catalyzed glycosidation reaction, Angew. Chem. Int. Ed., (2007), 46:5206-5208.
  • [119] H.-Y. L. Wang, G.A. O’Doherty, Modulators of Na/K-ATPase: a patent review, Expert Opin. Ther. Patents, (2012), 22:587-605.
  • [120] C. Bonini, G. Righi, A critical outlook and comparison of enantioselective oxidation methodologies of olefins, Tetrahedron, (2002), 58:4981-5021.
  • [121] V. Bhat, E.R. Welin, X.L. Guo, B.M. Stoltz, Advances in stereoconvergent catalysis from 2005–2015: transitionmetal-mediated stereoablative reactions, dynamic kinetic resolutions, and dynamic kinetic asymmetric transformations, Chem. Rev., (2017), 117:4528-4561.
  • [122] M.A. Ciufolini, C.Y. Wood, The aza-Achmatowicz rearrangement: a route to useful building blocks for N- containing structures, Tetrahedron Lett., (1986), 27:5085-5088.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8eb1442f-162c-47be-bf8f-3de912bcf717
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.