Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2020 | nr 63 | 23--37
Tytuł artykułu

Common best proximity points for proximally F–dominated mappings

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The principal aim of this work is to formulate an extension and improvement of the common best proximity point theorem for a pair of non-self mappings, one of which is dominated by the other as proved by Basha. The proposed extension discusses a common best proximity point theorem for a pair of non-self mappings, one of which is F-dominated by the other proximally, for a function F as defined by Wardowski.
Wydawca

Rocznik
Tom
Strony
23--37
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
Bibliografia
  • [1] Al-Thagafi M.A., Shahzad N., Best proximity sets and equilibrium pairs for a finite family of multimaps, Fixed Point Theory Appl., (2008) : 457069, 10 pp.
  • [2] Al-Thagafi M.A., Shahzad N., Convergence and existence results for best proximity points, Nonlinear Anal., 70(10)(2009), 3665-3671.
  • [3] Anuradha J., Veeramani P., Proximal pointwise contraction, Topology Appl., 156(18)(2009), 2942-2948.
  • [4] Banach S., Sur les opérations dans les ensembles abstraits et leur applications aux équations intégrale, Fund Math., 3(1922), 133-181.
  • [5] Eldred A.A., Kirk W.A., Veeramani P., Proximinal normal structure and relatively nonexpansive mappings, Studia Math., 171(3)(2005), 283-293.
  • [6] Fan K., Extensions of two fixed point theorems of F.E. Browder, Math. Z., 112(1969), 234-240.
  • [7] Jungck G., Commuting mappings and fixed points, Amer. Math. Monthly, 83(1976), 261-263.
  • [8] Reich S., Approximate selections, best approximations, fixed points and invariant sets, J. Math. Anal. Appl., 62(1978), 104-113.
  • [9] Sadiq Basha S., Best proximity points: global optimal approximate solution, J. Global Optim., (2010), DOI:10.1007/s10898-009-9521-0.
  • [10] Sadiq Basha S., Extensions of Banach’s contraction principle, Numer. Funct. Anal. Optim., 31(2010), 569-576.
  • [11] Sankar Raj V., Veeramani P., Best proximity pair theorems for relatively nonexpansive mappings, Appl. Gen. Topol., 10(1)(2009), 21-28.
  • [12] Wlodarczyk K., Plebaniak R., Banach A., Best proximity points for cyclic and noncyclic set-valued relatively quasi-asymptotic contractions in uniform spaces, Nonlinear Anal., 70(9)(2009), 3332-3341.
  • [13] Abkar A., Gabeleh M., Global optimal solutions of noncyclic mappings in metric spaces, J. Optim. Theory Appl., 153(2012), 298-305.
  • [14] Abkar A., Gabeleh M., A best proximity point theorem for Suzuki type contraction non-self-mappings, Fixed Point Theory, 14(2013), 281-288.
  • [15] Sadiq Basha S., Discrete optimization in partially ordered sets, J. Glob. Optim., 54(2012), 511-517.
  • [16] Raj V.S., A best proximity point theorem for weakly contractive non-self-mappings, Nonlinear Anal., 74(2011), 4804-4808.
  • [17] Choudhury B.S., Maity P., Konar P., A global optimality result using non-self-mappings, Opsearch, 51(2014), 312-320.
  • [18] Choudhury B.S., Maity P., Metiya N., Best proximity point theorems with cyclic mappings in setvalued analysis, Indian J. Math., 57(2015), 79-102.
  • [19] Dimri R.C., Semwal P., Best proximity results for multivalued mappings, Int. J. Math. Anal., 7(2013), 1355-1362.
  • [20] Gabeleh M., Proximal weakly contractive and proximal nonexpansive non-self-mappings in metric and Banach spaces, J. Optim. Theory Appl., 158(2013), 615-625.
  • [21] Gabeleh M., Best proximity point theorems via proximal non-self mappings, J. Optim. Theory Appl., 164(2015), 565-576.
  • [22] Gupta A., Rajput S.S., Kaurav P.S., Coupled best proximity point theorem in metric spaces, Int. J. Anal. Appl., 4(2014), 201-215.
  • [23] Hussain N., Kutbi M.A., Salimi P., Best proximity point results for modified α-ψ-proximal rational contractions, Abstr. Appl. Anal., 2013(2013), Article ID 927457.
  • [24] Karapinar E., Erhan I.M., Best proximity point on different type contractions, Appl. Math. Inf. Sci., 5(3)(2011), 558-569.
  • [25] Sadiq Basha S., Common best proximity points: global minimal solutions, Top, 21(1)(2013), 182-188, DOI 10.1007/s11750-011-0171-2.
  • [26] Sadiq Basha S., Veeramani P., Best proximity pair theorems for multi-functions with open fibres, J. Approx. Theory, 103(2000), 119-129.
  • [27] Wardowski D., Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 94(2012).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8ea3cdc1-cd61-4bc5-b162-9a5334a5e836
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.