Warianty tytułu
Języki publikacji
Abstrakty
One of the elements and purposes of the climate-energy policy of the European Union is to increase the efficiency of conversion of the energy from fossil fuels. Managing high-temperature heat losses which accompany the technological processes, especially in thermal power engineering, serves this goal. An example of effective use of this heat is through the application of distributed generation devices (including: fuel cells, microturbines, and Stirling engines), which produce in combination electric energy, or mechanical energy and heat. This paper presents research into a micro cogeneration system with a Stirling engine, using nitrogen as a working gas. A crucial element of the research is model-based analysis of changes in selected thermodynamic parameters, including among others: pressure change in the working cylinder. The presented comparison of the research results, as well as the results of simulation, effectively support the prediction processes as regards the system.
Czasopismo
Rocznik
Tom
Strony
295--305
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
- Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02-524 Warsaw, Poland, a.chmielewski@mechatronika.net.pl
autor
- Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02-524 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02-524 Warsaw, Poland
autor
- Warsaw University of Technology, Faculty of Automotive and Construction Machinery Engineering, Institute of Vehicles, Narbutta 84, 02-524 Warsaw, Poland
Bibliografia
- [1] EUCO 169/14 Conclusions, accessed 25.09.2015 (23/24 October 2014). URL http://www.consilium.europa.eu/
- [2] B. Knopf, P. Nahmmacher, E. Schmid, The european renewable energy target for 2030–an impact assessment of the electricity sector, Energy policy 85 (2015) 50–60.
- [3] A. Calvo-Silvosa, S. I. Antelo, I. Soares, et al., The european lowcarbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach, Renewable and Sustainable Energy Reviews 48 (2015) 49–61.
- [4] A. Chmielewski, R. Gumiński, S. Radkowski, P. Szulim, Aspekty wsparcia i rozwoju mikrokogeneracji rozproszonej na terenie polski, Rynek energii 5 (114) (2014) 94–101, in Polish.
- [5] Directive 2004/8/EC of the European Parliament and of the council of 11 February 2004 on the promotion of cogeneration based on a useful heat demand in the internal energy market and amending Directive 92/42/EC.
- [6] J. Milewski, Ł. Szabłowski, J. Kuta, Control strategy for an internal combustion engine fuelled by natural gas operating in distributed generation, Energy Procedia 14 (2012) 1478–1483.
- [7] J. Milewski, M. Wołowicz, R. Bernat, L. Szablowski, J. Lewandowski, Variant analysis of the structure and parameters of sofc hybrid systems, in: Applied Mechanics and Materials, Vol. 437, Trans Tech Publ, 2013, pp. 306–312.
- [8] A. Chmielewski, R. Gumiński, K. Lubikowski, J. Mączak, P. Szulim, Badania układu mikrokogeneracyjnego z silnikiem stirlinga. część I [research on the micro cogeneration system with stirling engine. part i], Rynek Energii 119 (4) (2015) 42–48, in Polish.
- [9] A. Chmielewski, R. Guminski, S. Radkowski, P. Szulim, Experimental research and application possibilities of microcogeneration system with stirling engine, Journal of Power Technologies 95 (5) (2015) 14–22.
- [10] A. Chmielewski, R. Gumiński, K. Lubikowski, J. Mączak, P. Szulim, Badania układu mikrokogeneracyjnego z silnikiem stirlinga. Częśc II [research on the micro cogeneration system with stirling engine. Part II], Rynek Energii 120 (5) (2015) 53–60, in Polish.
- [11] T. Li, D. Tang, Z. Li, J. Du, T. Zhou, Y. Jia, Development and test of a stirling engine driven by waste gases for the micro-chp system, Applied thermal engineering 33 (2012) 119–123.
- [12] C.-H. Cheng, H.-S. Yang, B.-Y. Jhou, Y.-C. Chen, Y.-J. Wang, Dynamic simulation of thermal-lag stirling engines, Applied energy 108 (2013) 466–476.
- [13] C.-H. Cheng, H.-S. Yang, L. Keong, Theoretical and experimental study of a 300-w beta-type stirling engine, Energy 59 (2013) 590–599.
- [14] M. Reséndiz-Antonio, M. Santillán, On the dynamical vs. thermodynamical performance of a _-type stirling engine, Physica A: Statistical Mechanics and its Applications 409 (2014) 162–174.
- [15] G. Xiao, C. Chen, B. Shi, K. Cen, M. Ni, Experimental study on heat transfer of oscillating flow of a tubular stirling engine heater, International Journal of Heat and Mass Transfer 71 (2014) 1–7.
- [16] L. Scollo, P. Valdez, S. Santamarina, M. Chini, J. Baron, Twin cylinder alpha stirling engine combined model and prototype redesign, International Journal of Hydrogen Energy 38 (4) (2013) 1988–1996.
- [17] C.-H. Cheng, Y.-J. Yu, Dynamic simulation of a beta-type stirling engine with cam-drive mechanism via the combination of the thermodynamic and dynamic models, Renewable energy 36 (2) (2011) 714–725.
- [18] C.-H. Cheng, Y.-J. Yu, Combining dynamic and thermodynamic models for dynamic simulation of a beta-type stirling engine with rhombic-drive mechanism, Renewable energy 37 (1) (2012) 161–173.
- [19] A. Jankowski, M. Jez, A. Swider, Investigation of non-linear dynamics of crankshaft assembly, Journal of KONES. Internal Combustion Engines 7 (1-2) (2000) 217–227.
- [20] M. Jez˙, A. S´wider, Analiza drgan´ nieliniowych jednocylindrowego silnika tłokowego, Journal of KONES 8 (3-4) (2001) 98–105, in Polish.
- [21] A. Chmielewski, R. Gumi´ nski, S. Radkowski, Chosen properties of a dynamic model of crankshaft assembly with three degrees of freedom, in: Methods and Models in Automation and Robotics (MMAR), 2015 20th International Conference on, IEEE, 2015, pp. 1038–1043.
- [22] D. Berchowitz, I. Urieli, Stirling Cycle Engine Analysis, Adam Hilger Ltd, Bristol, 1984.
- [23] R. Shoureshi, Analysis and design of stirling engines for waste-heat recovery, Ph.D. thesis, Massachusetts Institute of Technology (June 1981).
- [24] G. Walter, Stirling Engines, Oxford University Press, New York, 1980.
- [25] D. M. Berchowitz, Stirling cycle engine design and optimisation, Ph.D. thesis (1986).
- [26] M. Campos, J. Vargas, J. Ordonez, Thermodynamic optimization of a stirling engine, Energy 44 (1) (2012) 902–910.
- [27] S. Toghyani, A. Kasaeian, M. H. Ahmadi, Multi-objective optimization of stirling engine using non-ideal adiabatic method, Energy Conversion and Management 80 (2014) 54–62.
- [28] S. Toghyani, A. Kasaeian, S. H. Hashemabadi, M. Salimi, Multi- objective optimization of gpu3 stirling engine using third order analysis, Energy Conversion and Management 87 (2014) 521–529.
- [29] M. Babaelahi, H. Sayyaadi, Simple-ii: A new numerical thermal model for predicting thermal performance of stirling engines, Energy 69 (2014) 873–890.
- [30] Y. Timoumi, I. Tlili, S. B. Nasrallah, Performance optimization of stirling engines, Renewable Energy 33 (9) (2008) 2134–2144.
- [31] Y. Timoumi, I. Tlili, S. B. Nasrallah, Design and performance optimization of gpu-3 stirling engines, Energy 33 (7) (2008) 1100–1114.
- [32] N. Parlak, A. Wagner, M. Elsner, H. S. Soyhan, Thermodynamic analysis of a gamma type stirling engine in non-ideal adiabatic conditions, Renewable Energy 34 (1) (2009) 266–273.
- [33] M. Babaelahi, H. Sayyaadi, A new thermal model based on polytropic numerical simulation of stirling engines, Applied Energy 141 (2015) 143–159.
- [34] M. H. Ahmadi, M. A. Ahmadi, S. A. Sadatsakkak, M. Feidt, Connectionist intelligent model estimates output power and torque of stirling engine, Renewable and Sustainable Energy Reviews 50 (2015) 871–883.
- [35] F. Sala, C. Invernizzi, D. Garcia, M.-A. Gonzalez, J.-I. Prieto, Preliminary design criteria of stirling engines taking into account real gas effects, Applied Thermal Engineering 89 (2015) 978–989.
- [36] C. J. Paul, A. Engeda, Modeling a complete stirling engine, Energy 80 (2015) 85–97.
- [37] P. Alcan, A. Balin, H. Ba¸slıgil, Fuzzy multicriteria selection among cogeneration systems: a real case application, Energy and Buildings 67 (2013) 624–634.
- [38] C.-H. Cheng, H.-S. Yang, Theoretical model for predicting thermodynamic behavior of thermal-lag stirling engine, Energy 49 (2013) 218–228.
- [39] J. A. Araoz, M. Salomon, L. Alejo, T. H. Fransson, Non-ideal stirling engine thermodynamic model suitable for the integration into overall energy systems, Applied Thermal Engineering 73 (1) (2014) 205–221.
- [40] F. Sala, C. M. Invernizzi, Low temperature stirling engines pressurized with real gas effects, Energy 75 (2014) 225–236.
- [41] F. Formosa, G. Despesse, Analytical model for stirling cycle machine design, Energy Conversion and Management 51 (10) (2010) 1855–1863.
- [42] A. J. Organ, The regenerator and the Stirling engine, Mechanical Engineering Publications Limited, London, 1997.
- [43] S. Zmudzki, Silniki Stirlinga [Stirling Engines],Wydawnictwa Naukowo-Techniczne, Warsaw, 1993.
- [44] R. Gheith, F. Aloui, S. B. Nasrallah, Determination of adequate regenerator for a gamma-type stirling engine, Applied Energy 139 (2015) 272–280.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8e1e30a5-0df2-4195-8bb2-9ea808e75568