Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2006 | Vol. 22 | 37--45
Tytuł artykułu

A survey of modern systems of vibration reduction of civil engineering structures

Autorzy
Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Konferencja
Symposium “Vibrations In Physical Systems” (22 ; 19-22.04.2006 ; Będlewo koło Poznania, Polska)
Języki publikacji
EN
Abstrakty
Wydawca

Rocznik
Tom
Strony
37--45
Opis fizyczny
Bibliogr. 60 poz.
Twórcy
Bibliografia
  • 1. Housner B. W., Bergman L. A., Caughey T. K., Chassiakos A. G., Claus R. O., Masri S. F., Skelton R. E., Soong T. T., Spencer B. F., Yao J. T. P., Structural control: past, present, and future, J. Eng. Mech., 123 (1997) 897 – 971.
  • 2. Soong T. T., State-of-the-art-review. Active structural control in civil engineering, Eng. Struct., 10, (1988) 74 – 84.
  • 3. Symans M. D., Constantinou M. C., Semi-active control systems for seismic protection of structures: a state-of-the-art review, Eng. Struct., 21, (1999) 469 – 487.
  • 4. Soong T. T., Spencer B. F., Supplemental energy dissipation: state-of-the-art and state-of-the-practice, Eng. Struct., 24, (2002) 243 – 259.
  • 5. Spencer B. F., State of the art of structural control, J. Struct. Eng., 129, (2003) 845 – 856.
  • 6. Soong T. T., Active structural control. Theory and practice, Longman Scientific and Technical, Harlow 1990.
  • 7. Soong T. T., Dargush G. F., Passive energy dissipation systems in structural Engineering, Wiley, Chichester 1999.
  • 8. Meirovich L., Dynamics and control of structures, Wiley, New York 1990.
  • 9. Lewandowski R., Dynamics of civil engineering structures, Poznan University of Technology Publishing House, Poznan 2006 (chapters 12 – 14, in press, in Polish).
  • 10. http://www.taylordevices.com/StructuralChart2006.pdf
  • 11. Shen K. L., Soong T. T., Modeling of viscoelastic dampers for structural application, J. Eng. Mech., 121, (1993) 694 – 701.
  • 12. Park S. W., Analytical modeling of viscoelastic dampers for structural and vibration control, Int. J. Solids and Struct.,38, (2001) 8065 – 8092.
  • 13. Aprile A., Inaudi J. A., Kelly J. M., Evolutionary model of viscoelastic dampers for structural applications, J. Eng. Mech., 123, (1997) 551 – 560.
  • 14. Makris N., Constantinou M. C., Fractional-derivative Maxwell model for viscous dampers, J. Struct. Eng., 117, (1991) 2708 – 2724.
  • 15. Hatada T., Kobori T., Ishida M., Niwa N., Dynamic analysis of structures with Maxwell model, Earthq. Eng., Struct. Dyn., 29, (2000) 159 – 176.
  • 16. Chang K. C., Soong T. T., Lai M. L., Nielsen E. J., Viscoelastic dampers as energy dissipation devices for seismic applications. Earthq. Spectra, 9, (1993) 371 – 388.
  • 17. Lin Y. Y., Tsai M. H., Hwang J. S., Chang K. C., Direct displacement-based design for building with passive energy dissipation systems, Eng. Struct., 25, (2003) 25 – 37.
  • 18. Zhang R. H., Soong T. T., Seismic design of viscoelastic dampers for structural applications, J. Struct. Eng., Proc. ASCE, 118, (1992) 1375 – 1392.
  • 19. Lee S. H., Son D. I., Kim J., Min K. W., Optimum design of viscoelastic dampers using eigenvalue assignment, Earthq. Eng., Struct. Dyn., 33, (2004) 521 – 542.
  • 20. Singh M. P., Moreschi L. M., Optimal placement of dampers for passive response control, Earthq. Eng., Struct. Dyn., 31, (2002) 955 – 976.
  • 21. Loh C. H., Lin P. Y., Chung N. H., Design of dampers for structures based on optimal control theory, Earthq. Eng., Struct. Dyn., 29, (2000) 1307 – 1323.
  • 22. Mita A., Feng M. Q., Response control strategy for tall buildings using interaction between mega and sub-structures, Proc. Int. Workshop on Civ. Infrastructural Sys., (1994) 329 – 341.
  • 23. Yao J. T. P., Concept of structural control, ASCE J. Struct. Div., 98, (1972) 1567 – 15754.
  • 24. web page http://cee.uiuc.edu/sstl
  • 25. Loh C. H., Lin P. Y., Kalman filter approach for the control of seismic-induced building vibration using active mass damper systems, The Structural Design of Tall Buildings, 6, (1997) 209 – 224.
  • 26. Arfiadi Y., Hadi M. N. S., Optimal direct (static) output feedback controller using real coded genetic algorithms, Comp. Struct., 79, (2001) 1625 – 1634.
  • 27. Yamada K., Kobori T., Linear quadratic regulator for structure under on-line predicted future seismic excitation, Earthq. Eng., Struct. Dyn., 25, (1996) 631 – 644.
  • 28. Ikeda Y., Effect of weighting a stroke of an active mass damper in the linear quadratic regulator problem, Earthq. Eng., Struct. Dyn., 26, (1997) 1125 – 1136.
  • 29. Chang C. C., Yang H. T. Y., Instantaneous optimal control of building frames. J. Struct. Eng., 120, (1994) 1307 – 1326.
  • 30. Wong K. K. F., Yang R., Predictive instantaneous optimal control of elastic structures during earthquakes, Earthq. Eng., Struct. Dyn., 32, (2003) 2161 – 2177.
  • 31. Wu J. C., Yang J. N., Schmitendorf W. E., Reduced-order H∞ and LQR control for wind-excited tall buildings, Eng. Struct., 20, (1998) 222 – 236.
  • 32. Pham K. D., Jin G., Sain M. K., Spencer B. F., Liberty S. R., Generalized linear quadratic Gaussian technique for wind benchmark problem, J. Eng. Mech., 130, (2004) 466 – 470.
  • 33. Xu Y. L., Zhang W. S., Closed-form solution for seismic response of adjacent buildings with linear quadratic Gaussian controllers, Earthq. Eng., Struct. Dyn., 31, (2002) 235 – 259.
  • 34. Ankiredi S., Yang H. T. T., Sampled-data H2 optimal output feedback control for civil structures, Earthq. Eng., Struct. Dyn., 28, (1999) 921 – 940.
  • 35. Kose I. E., Schmitendorf W. E., Jabbari F., Yang J. N., H∞ active seismic response control using static output feedback, J. Eng. Mech., 122, (1996) 651 - 659.
  • 36. Jabbari F., Schmitendorf W.E., Yang J.N., H∞ control for seismic-excited buildings with acceleration feedback, J. Eng. Mech., 121, (1995) 994 – 1002.
  • 37. Chang C. C., Yu L. O., A simple optimal pole location technique for structural control, Eng. Struct., 20, (1998) 792 – 804.
  • 38. Lu I. Y., Discrete-time modal control for seismic structures with active bracing system, J. Inteligent Sys. Struct., 12, (2001) 369 – 381.
  • 39. Moon S. J., Bergman L. A., Voulgaris P. G., Sliding mode control of cable-stayed bridge subjected to seismic excitation, J. Eng. Mech., 129, (2003) 71 – 78.
  • 40. Ashlawat A. S., Ramaswamy A., Multiobjective optimal fuzzy logic controller driven active and hybrid control systems for seismically excited nonlinear buildings, J. Eng. Mech., 130, (2004) 416 – 423.
  • 41. Bani-Hani K., Ghaboussi J., Neural networks for structural control of a benchmark problem, active tendon system, Earthq. Eng., Struct. Dyn., 27, (1998) 1225 – 1245.
  • 42. Lin C.C., Lu K.H., Chung L.L., Optimal discrete-time structural control using direct output feedback, Eng. Struct., 18, (1996) 472 – 480.
  • 43. Lu X., Zhao B., Discrete-time variable control of seismically excited building structures, Earthq. Eng., Struct. Dyn., 30, (2001) 853 – 863.
  • 44. Bartels R., Stewart G., Solution of the matrix equation AX+XB=C; Algorithm 432, Comm. ACM, 15, (1972) 820 – 826.
  • 45. Mei C., Mace B. R., Reduction of control spillover in active vibration control of distributed structures using multioptimal schemes, J. of Sound and Vib., 251, (2002) 184 – 192.
  • 46. Agrawal A.K., Yang J.N., Compensation of time-delay for control of civil engineering structures, Earthq. Eng., Struct. Dyn., 29, (2000) 37 – 62.
  • 47. Lin C. C., Sheu J. F., Chu S. Y., Chung L.L., Time-delay effect and its solution for optimal output feedback control of structures, Earthq. Eng., Struct. Dyn., 25, (1996) 547 – 559.
  • 48. Cai G., Huang J., Discrete-time variable structure control method for seismicexcited building structures with time delay in control, Earthq. Eng. Struct. Dyn., 31, (2002) 1347 – 1359.
  • 49. Chen G., Wu J., Experimental study on multiple tuned mass dampers to reduce seismic responses of a three-storey building structure, Earthq. Eng. Struct. Dyn., 32, (2003) 793 – 810.
  • 50. Chen H. M., Qi G. Z., Yang J. C. S., Amini F., Experimental study of active control using neural networks, J. Struct. Control, 5, (1998) 27 – 43.
  • 51. Gu M., Peng F., An experimental study of active control of wind-induced vibration of super-tall buildings, J. Wind Eng. Industrial Aerodyn., 90, (2002) 1919 – 1931.
  • 52. Abdullah M. M., Richardson A., Hanif J., Placement of sensors/actuators on civil structures using genetic algorithms, Earthq. Eng. Struct. Dyn., 30, (2001) 1167 – 1184.
  • 53. Alt T. R., Jabbari F., Yang J. N., Control design for seismically excited buildings: sensor and actuator reliability, Earthq. Eng. Struct. Dyn., 29, (2000) 241 – 257.
  • 54. Brown A. S., Ankiredi S., Yang H. T. Y., Actuator and sensor placement for multiobjective control of structures, J. Struct. Eng., 125, (1999) 757 – 765.
  • 55. Patten W. N., Sack R. L., He Q., Controlled semiactive hydraulic vibration absorber for bridges, J. Struct. Eng., 122, (1996) 187 – 192.
  • 56. Kobori T., Takahashi M. T Nasu T., Niwa N., Seismic response controlled structure with active variable stiffness system, Earthq. Eng. Struct. Dyn., 22, (1993) 925 – 941.
  • 57. Lu L. Y., Semi-active modal control for seismic structures with variable friction dampers, Eng. Struct., 26, (2004) 437 – 454.
  • 58. Jabbari F., Bobrow J. E., Vibration suppression with resettable device, J. Eng. Mech., 128, (2002) 916 – 924
  • 59. Spencer B. F., Dyke S. J., Sain M. K., Carison J. D., Phenomenological model for magnetorheological dampers, J. Eng. Mech., 123, (1997) 230 – 238.
  • 60. Patten W. N., Sack R. L., He Q., Controlled semi-active hydraulic vibration absorber for bridges, J. Struct. Eng, 122, (1994) 187 – 192.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8e122f32-0086-4f48-bfba-91bc3bd90842
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.