Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2013 | Vol. 25, no. 3 | 411--422
Tytuł artykułu

Quantitative structure-retention relationship prediction of Kováts retention index of some organic acids

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this work, quantitative structure-retention relationship (QSRR) approaches were applied for modeling and prediction of the gas chromatographic retention indices of some amino acids (AAs) and carboxylic acids (CAs). The genetic algorithm (GA) method was used to select the most relevant descriptors, which are responsible for the retention of these compounds. Then, multiple linear regression (MLR), artificial neural network (ANN) and support vector machine (SVM) were utilized to construct the nonlinear and linear quantitative structure-retention relationship models. The obtained results revealed that the GA-ANN developed model was better than other models. This model has the average absolute relative errors of 0.043, 0.052 and 0.045 for training, internal and external test set. Applying the 10-fold cross-validation procedure on GAAAN model obtained the statistics of Q2 = 0.941 which revealed the reliability of this model.
Wydawca

Rocznik
Strony
411--422
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
  • University of Mazandaran Laboratory of Chemometrics, Faculty of Chemistry Babolsar Iran, mhfatemi@umz.ac.ir
autor
  • University of Mazandaran Laboratory of Chemometrics, Faculty of Chemistry Babolsar Iran
Bibliografia
  • [1] P. Husek, J. Chromatogr. B, 669, 352 (1995)
  • [2] C.-H. Oh, J.-H. Kim, K.-R. Kim, D.M. Brownson, and T.J. Mabry, J. Chromatogr. A, 669, 125 (1994)
  • [3] K.-R. Kim, J.-H. Kim, D.-H. Jeong, D.-J. Paek, and H.M. Liebich, J. Chromatogr. B, 701, 1 (1997)
  • [4] K.-R. Kim, H.-K. Park, M.-J. Paik, H.-S. Ryu, K.S. Oh, S.-W. Myung, and H.M. Liebich, J. Chromatogr. B, 712, 11 (1998)
  • [5] E. Kovats, Anal. Chim. Acta, 4, 1915 (1958)
  • [6] K. Heberger, J. Chromatogr. A, 1158, 273 (2007)
  • [7] T.B. Czek, P. Wiczling, M. Marszałł, Y.V. Heyden, and R. Kaliszan, J. Prot. Res., 4, 555 (2005)
  • [8] K. Heberger and T. Kowalska, Chemom. Intell. Lab. Syst., 47, 205 (1999)
  • [9] C. Lu, W. Guo, and C. Yin, Anal. Chim. Acta, 561, 96 (2006)
  • [10] V.K. Gupta, H. Khani, B. Ahmadi-Roudi, S. Mirakhorli, E. Fereyduni, and S. Agarwal, Talanta, 83, 1014 (2011)
  • [11] C.I.D. Matteis, D.A. Simpson, S.W. Doughty, M.R. Euerby, P.N. Shaw, and D.A. Barrett, J. Chromatogr. A, 1217, 6987 (2010)
  • [12] H. Wei, R. Yang, A. Li, E.R. Christensen, and K.J. Rockne, J. Chromatogr. A, 1217, 2964 (2010)
  • [13] Y. Wang, X. Yao, X. Zhang, R. Zhang, M. Liu, Z. Hu, and B. Fan, Talanta, 57, 641 (2002)
  • [14] Y. Gao, Y. Wang, X. Yao, X. Zhang, M. Liu, Z. Hua, and B. Fan, Talanta, 59, 229 (2003)
  • [15] O. Farkas, K. Heberger, and I.G. Zenkevich, Chemom. Intell. Lab. Syst., 72, 173 (2004)
  • [16] M.H. Fatemi and Z. Ghorbannezhad, J. Chromatogr. Sci., 49, 476 (2011)
  • [17] M.H. Fatemi, E. Baher, and M. Ghorbanzade, J. Sep. Sci., 32, 4133 (2009)
  • [18] M.H. Fatemi, E. Baher, and M. Ghorbanzade, Anal. Lett., 43, 823 (2010)
  • [19] M. Jalali-Heravi and M.H. Fatemi, J. Chromatogr. A, 915, 177 (2001)
  • [20] M.H. Fatemi, M.H. Abraham, and C.F. Poole, J. Chromatogr. A, 1190, 241 (2008)
  • [21] M.H. Fatemi and H. Shamseddin, J. Sep. Sci., 32, 3395 (2009)
  • [22] M.-J. Paik, H.-J. Lee, and K.-R. Kim, J. Chromatogr. B, 821, 94 (2005)
  • [23] http://www.disat.unimib.it/chm
  • [24] The Math Works Inc., Genetic Algorithm and Direct Search Toolbox Users Guide, Massachusetts, 2002
  • [25] M. Chumieja, Genetic Algorithms, Wroclaw University of Technology, 2000
  • [26] STATISTICA PL 7.1 for Windows, Instruction Manual, StatSoft, 2005
  • [27] C. Cortes and V. Vapnik, Mach. Learn., 20, 273 (1995)
  • [28] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vector Machines, Cambridge University Press, Cambridge, 2000
  • [29] V.N. Vapnik, Statistical Learning Theory, Wiley, New York, 1998, 736
  • [30] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer-Verlag, New York, 1995, 314
  • [31] A.G. Maldonado, J.P. Doucet, M. Petitjean, and B.T. Fan, Mol. Diversity, 10, 39 (2006)
  • [32] M.H. Fatemi, H. Malekzadeh, and H. Shamseddin, J. Sep. Sci., 32, 653 (2009)
  • [33] R. Leardi, J. Chromatogr. A, 1158, 226 (2007)
  • [34] K. Levenberg, Q. Appl. Math., 2, 164 (1944)
  • [35] D. Marquardt, J. Soc. Ind. Appl. Math., 11, 431 (1963)
  • [36] T. Ting and I.U. Ojalvo, Finite Elem. Anal. Des., 5, 247 (1989)
  • [37] M. Jalali and M.H. Fatemi, J. Chromatogr. A, 825, 161 (1998)
  • [38] M. Jalali-Heravi, M.H. Fatemi, J. Chromatogr. A, 897, 227 (2000)
  • [39] M.H. Fatemi, M. Jalali-Heravi, and E. Knouze, Anal. Chim. Acta, 486, 101 (2003)
  • [40] M.H. Fatemi and M. Haghdadi, J. Mol. Struct., 886, 43 (2008)
  • [41] H.P. Schultz, E.B. Schultz, and T.P. Schultz, J. Chem. Inf. Comput. Sci., 32, 69 (1992)
  • [42] M. Randic, Comm. Math. Comp. Chem., 7, 5 (1979)
  • [43] M. Randic, G.M. Brissey, R.B. Spencer, and C.L. Wilkins, Computers Chem., 3, 5 (1979)
  • [44] X. Chen, A. Rusinko, S.S. Young, J. Chem. Inf. Comput. Sci., 38, 1054 (1998)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8df2ac67-d131-4a15-bbe8-2087ce34cefb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.