Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2021 | Vol. 69, no. 1 | 295--305
Tytuł artykułu

Climate change impacts on sea surface temperature (SST) trend around Turkey seashores

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper focuses on sea surface temperature (SST) trends due to the importance of temperature diference in climate change impact research. These trends are not only essential for climate, but they are also important for marine ecosystem. Immigration of fsh population due to the temperature changes is expected to cause unexpected economical results. For this purpose, both classical Mann–Kendall, (MK) (Mann in Econom: J Econom Soc 13:245–259, 1945; Kendall in Rank Correlation Methods, Charless Grifn, London, 1975) and innovative trend analysis (ITA) (Şen in J Hydrol Eng 17(9):1042–1046, 2012) methodologies are applied for the SST data records. Monthly SST data are considered along the Black, Marmara, Aegean, and Mediterranean coastal areas in Turkey. SST data are categorized into fve clusters considering fsh life as “hot,” “warm-hot,” “warm,” “cold,” and “very cold.” According to ITA, SST in all coastal areas tends to increase except for winter season during “very cold” (0–10 °C) temperatures. The temperature changes in both winter and summer seasons are expected to change the marine life, fsh population, tourism habit, precipitation regime, and drought feature.
Wydawca

Czasopismo
Rocznik
Strony
295--305
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
  • School of Engineering and Natural Sciences, Civil Engineering Department, Istanbul Medipol University, Kavacık, Istanbul, Turkey
  • Climate Change Researches Application and Research Center, (IKLIMER) Kavacık, Istanbul Medipol University, Istanbul, Turkey
  • School of Engineering and Natural Sciences, Civil Engineering Department, Istanbul Medipol University, Kavacık, Istanbul, Turkey, esisman@medipol.edu.tr
  • Climate Change Researches Application and Research Center, (IKLIMER) Kavacık, Istanbul Medipol University, Istanbul, Turkey
  • Department of Civil Engineering, Engineering and Natural Sciences Faculty, Istanbul Medeniyet University, 34700, Üsküdar, Istanbul, Turkey
  • Ministry of Environment and Urbanization, 06510 Cankaya, Ankara, Turkey
autor
  • School of Engineering and Natural Sciences, Civil Engineering Department, Istanbul Medipol University, Kavacık, Istanbul, Turkey
  • Climate Change Researches Application and Research Center, (IKLIMER) Kavacık, Istanbul Medipol University, Istanbul, Turkey
  • Center of Excellence for Climate Change Research (CECCR), Faculty of Arid Lands, Meteorology and Agriculture, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
Bibliografia
  • 1. Aksoy AO (2017) Investigation of sea level trends and the effect of the north atlantic oscillation (NAO) on the black sea and the eastern mediterranean sea. Theoret Appl Climatol 129(1–2):129–137. https://doi.org/10.1007/s00704-016-1759-0
  • 2. Alashan S (2018) An improved version of innovative trend analyses. Arab J Geosci 11(3):50
  • 3. Almazroui M, Şen Z, Mohorji AM, Islam MN (2019) Impacts of climate change on water engineering structures in arid regions: case studies in Turkey and Saudi Arabia. Earth Syst Environ 3(1):43–57
  • 4. Al-Rashidi TB, El-Gamily HI, Amos CL, Rakha KA (2009) Sea surface temperature trends in Kuwait bay. Arabian Gulf Nat Hazards 50(1):73–82
  • 5. Amos CL, Umgiesser G, Ghezzo M, Kassem H, Ferrarin C (2017) Sea surface temperature trends in Venice Lagoon and the adjacent waters. J Coast Res 33(2):385–395
  • 6. Barbosa SM, Andersen OB (2009) Trend patterns in global sea surface temperature. Int J Climatol: J R Meteorol Soc 29(14):2049–2055
  • 7. Bouali M, Sato OT, Polito PS (2017) Temporal trends in sea surface temperature gradients in the South Atlantic Ocean. Remote Sens Environ 194:100–114
  • 8. Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425(6956):365–365. https://doi.org/10.1038/425365a
  • 9. Chu C, Jones NE, Piggott AR, Buttle JM (2009) Evaluation of a simple method to classify the thermal characteristics of streams using a nomogram of daily maximum air and water temperatures. North Am J Fish Manag 29(6):1605–1619. https://doi.org/10.1577/M08-251.1
  • 10. Dabanli İ, Şen Z (2018) Classical and innovative-Şen trend assessment under climate change perspective. Int J Global Warm 15(1):19–37
  • 11. Dabanli İ, Şen Z, Yeleğen MÖ, Şişman E, Selek B, Güçlü YS (2016) Trend assessment by the innovative-Şen method. Water Resour Manage 30(14):5193–5203
  • 12. Deser C, Alexander MA, Xie S, Phillips AS (2010) Sea surface temperature variability: Patterns and mechanisms. Ann Rev Mar Sci 2(1):115–143
  • 13. Dogan M, Cigizoglu HK, Sanli DU, Ulke A (2015) Investigation of sea level anomalies related with NAO along the west coasts of Turkey and their consistency with sea surface temperature trends. Theoret Appl Climatol 121(1):349–358
  • 14. Erişmiş M (2019) Trends in sea surface temperatures in Turkey. M.S. thesis. Çankırı Karatekin University, Institute of Social Sciences
  • 15. Gattuso JP, Hoegh-Guldberg O, Pörtner HO (2014) Cross-chapter box on coral reefs. In: Climate change 2014: impacts, adaptation, and vulnerability. part a: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel of climate change. Cambridge University Press, pp 97–100
  • 16. Goikoetxea N, Borja Á, Fontán A, González M, Valencia V (2009) Trends and anomalies in sea-surface temperature, observed over the last 60 years, within the southeastern Bay of Biscay. Cont Shelf Res 29(8):1060–1069
  • 17. González M, Fontán A, Esnaola G, Collins M (2013) Abrupt changes, multidecadal variability and long-term trends in sea surface temperature and sea level datasets within the southeastern Bay of Biscay. J Mar Syst 109:S144–S152
  • 18. Güçlü Y (2013) Sea surface temperature anomalies along the Black Sea Region coast of Turkey (1971–2010 period). J Hum Sci 10(1):863–896
  • 19. Güçlü YS (2020) Improved visualization for trend analysis by comparing with classical Mann–Kendall test and ITA. J Hydrol 584:124674
  • 20. Güçlü YS, Şişman E, Dabanlı İ (2020) Innovative triangular trend analysis. Arab J Geosci 13(2):1–8
  • 21. Güçlü YS, Dabanlı İ, Şişman E, Şen Z (2019) Air quality (AQ) identification by innovative trend diagram and AQ index combinations in Istanbul megacity. Atmos Pollut Res 10(1):88–96
  • 22. Güçlü YS, Şişman E, Yeleğen MÖ (2018) Climate change and frequency–intensity–duration (FID) curves for Florya station, Istanbul. J Flood Risk Manag 11(S1):S403–S418
  • 23. Gürarslan C (2010) The impact of climate variability on the production of Black Sea anchovy: a modeling study. M.S. thesis. Middle East Technical University, the Graduate School of Marine Sciences
  • 24. Haylock MR, Peterson TC, Alves LM, Ambrizzi T, Anunciação YMT, Baez J, Barros VR, Berlato MA, Bidegain M, Coronel G et al (2006) Trends in total and extreme South American rainfall in 1960–2000 and links with sea surface temperature. J Clim 19(8):1490–1512
  • 25. Johannessen OM, Bengtsson L, Miles MW, Kuzmina SI, Semenov VA, Alekseev GV, Nagurnyi PA, Zakharov FV, Bobylev PL, Pettersson HL, Hasselmann K, Cattle PH (2004) Arctic climate change: observed and modelled temperature and sea-ice variability. Tellus A: Dyn Meteorol Oceanogr 56(4):328–341
  • 26. Kayhan FE, Kaymak G, Tartar Ş, Akbulut C, Esmer HE, Ertuğ NDY (2015) Effects of global warming on fish and marine ecosystems. Erciyes Univ J Inst Sci Technol 33(3):128–134
  • 27. Kazmin AS, Zatsepin AG (2007) Long term variability of surface temperature in the Black Sea, and its connection with the large-scale atmospheric forcing. J Mar Syst 68(1–2):293–301
  • 28. Kendall MG (1975) Rank correlation methods. Charless Griffin, London
  • 29. Mann HB (1945) Nonparametric tests against trend. Econom: J Econom Soc 13:245–259
  • 30. Meekan MG, Carleton JH, McKinnon AD, Flynn K, Furnas M (2003) What determines the growth of tropical reef fish larvae in the plankton: food or temperature? Mar Ecol Prog Ser 256:193–204
  • 31. Meltzner AJ, Switzer AD, Horton BP, Ashe E, Qiu Q, Hill DF, Bradley LS, Kopp ER, Hill ME, Majewski MJ, Natawidjaja HD, Suwargadi WB (2017) Half-metre sea-level fluctuations on centennial timescales from mid-Holocene corals of Southeast Asia. Nat Commun 8(1):1–16
  • 32. Mohorji AM, Şen Z, Almazroui M (2017) Trend analyses revision and global monthly temperature innovative multi-duration analysis. Earth Syst Environ 1(1):9
  • 33. Mol S, Doğruyol H (2012) The effect of climate change on seafood and their consumption. J Fish Sci 6(4):341–356
  • 34. Park KA, Lee EY, Chang E, Hong S (2015) Spatial and temporal variability of sea surface temperature and warming trends in the yellow sea. J Mar Syst 143:24–38
  • 35. Renner AH, Gerland S, Haas C, Spreen G, Beckers JF, Hansen E, Nicolaus M, Goodwin H (2014) Evidence of Arctic sea ice thinning from direct observations. Geophys Res Lett 41(14):5029–5036. https://doi.org/10.1002/2014GL060369
  • 36. Robertson R, Visbeck M, Gordon AL, Fahrbach E (2002) Long-term temperature trends in the deep waters of the Weddell Sea. Deep-Sea Research Part II. Top cal Stud Oceanogr 49(21):4791–4806
  • 37. Robitzch V, Berumen ML (2020) Recruitment of coral reef fishes along a cross-shelf gradient in the Red Sea peaks outside the hottest season. Coral Reefs 39(6):1565–1579. https://doi.org/10.1007/s00338-020-01985-9
  • 38. Saplioglu K, Kilit M, Yavuz BK (2014) Trend analysis of streams in the Western Mediterranean basin of Turkey. Fresenius Environ Bull 23(1):313–324
  • 39. Şen Z (2012) Innovative trend analysis methodology. J Hydrol Eng 17(9):1042–1046
  • 40. Şen Z (2014) Trend identification simulation and application. J Hydrol Eng 19(3):635–642
  • 41. Şen Z, Şişman E, Dabanli I (2019) Innovative polygon trend analysis (IPTA) and applications. J Hydrol 575:202–210
  • 42. Sezgin Ç (2016) Investigation of the effects of temperature on the sex of loggerhead sea turtle (Caretta caretta L.) hatchlings and migration patterns of adults. M.S. thesis. Pamukkale University, The Graduate School of Natural and Applied Sciences
  • 43. Shaltout M (2019) Recent sea surface temperature trends and future scenarios for the Red Sea. Oceanologia 61(4):484–504
  • 44. Shaltout M, Omstedt A (2014) Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 56(3):411–443
  • 45. Şişman E (2021) Power-law characteristics of trend analysis in Turkey. Theoret Appl Climatol. https://doi.org/10.1007/s00704-020-03408-9
  • 46. Smith B, Fricker HA, Gardner AS, Medley B, Nilsson J, Paolo FS, Holschuh N, Adusumilli S, Brunt K, Csatho B, Harbeck K, Markus T, Neumann T, Siegfried MR, Zwally HJ (2020) Pervasive ice sheet mass loss reflects competing ocean and atmosphere processes. Science 368(6496):1239–1242
  • 47. Sponaugle S, Grorud-Colvert K, Pinkard D (2006) Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar Ecol Prog Ser 308:1–15
  • 48. Trenberth KE, Fasullo JT, O’Dell C, Wong T (2010) Relationships between tropical sea surface temperature and top-of-atmosphere radiation. Geophys Res Lett 37(3):1–5. https://doi.org/10.1029/2009GL042314
  • 49. Zveryaev II (2015) Seasonal differences in intraseasonal and interannual variability of Mediterranean Sea surface temperature. J Geophys Res C: Oceans 120(4):2813–2825
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8de62950-ad25-435c-b752-b165615e9448
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.