Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 18, no. 4 | 1686--1697
Tytuł artykułu

Metallographic analysis of piercing armor plate by explosively formed projectiles

Wybrane pełne teksty z tego czasopisma
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work discusses the impact consequences of Explosively Formed Projectiles (EFP) on the process of armor penetration. Based on the example of piercing shields made of armor steel ARMOX 370T with anti-vehicle mine of MPB type to verify the effectiveness of EFP charge. The influence of the projectile on the armor wall was analyzed on the basis of metallographic examination of the material from the armor, its plastic deformation and the change in the structure of the material within the shock influence area. As a result of the slug projectile impact on the armor surface a crater as a hole was formed with a diameter of approx. 105–120 mm, with noticeable traces of dynamic plastic deformation which occur at high speeds and high temperatures. In addition, microstructure analysis of the mines liner was performed, as in before and after piercing based on the analysis of EDS for phase precipitates identification.
Wydawca

Rocznik
Strony
1686--1697
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Foundry, Plastics and Automation, 25 Smoluchowskiego Street, 50-372 Wroclaw, Poland, adam.kurzawa@pwr.edu.pl
autor
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Mechanics, Materials Science and Engineering, 25 Smoluchowskiego Street, 50-372 Wroclaw, Poland, dariusz.pyka@pwr.edu.pl
autor
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Mechanics, Materials Science and Engineering, 25 Smoluchowskiego Street, 50-372 Wroclaw, Poland, miroslaw.bocian@pwr.edu.pl
  • Wroclaw University of Science and Technology, Faculty of Mechanical Engineering, Department of Mechanics, Materials Science and Engineering, 25 Smoluchowskiego Street, 50-372 Wroclaw, Poland, krzysztof.jamroziak@pwr.edu.pl
  • Military Institute of Engineer Technology, Ammunition Testing Laboratory, 136 Obornicka Street, 50-961 Wroclaw, Poland, sliwinski@witi.wroc.pl
Bibliografia
  • [1] J.J. Morrison, P.F. Mahoney, T. Hodgetts, Shaped charges and explosively formed penetrators: background for clinicians, J. R. Army Med. Corps 153 (3) (2007) 184–187.
  • [2] P. Dypcio, W. Barnat, Numerical and experimental examination of ballistic system subjected to IED explosion, Solid State Phenom. 224 (2014) 276–285.
  • [3] C.E. Munroe, Modern Explosives, Scribner's Magazine, vol. III, 1888, 563–576.
  • [4] P.O.K. Krehl, History of Shock Waves, Explosions and Impact. A Chronological and Biographical Reference, Springer, Berlin, Heidelberg, 2009.
  • [5] W.P. Walters, Explosive Loading of Metals and Related Topics, US Army Ballistic Research Laboratory Aberdeen Proving Ground, Maryland, 1986.
  • [6] J.A. Zukas, W.P. Walters, Explosive Effects and Applications, Springer, New York, 1998.
  • [7] D.E. Bender, M. Viejo, J. Carleone, Y. Linda, Calif, Method and Apparatus for Providing an Explosively Formed Penetrator Having Fins, United States Patent No. 5365852, 1994.
  • [8] G. Birknoff, D.P. MacDougall, E.M. Pugh, S.G. Taylor, Explosives with lined cavities, J. Appl. Phys. 19 (6) (1948) 563–582.
  • [9] J. Janiszewski, R. Panowicz, Investigation of copper fragmentation property, Solid State Phenom. 165 (2010) 66–72.
  • [10] J.A. Zukas, T. Nicholas, H.F. Swift, L.B. Greszczuk, D.R. Curran, Impact Dynamics, John Wiley & Sons, New York, 1982.
  • [11] H. Shekhar, Theoretical modelling of shaped charges in the last two decades (1990–2010): a review, Central Eur. J. Energet. Mater. 9 (2) (2012) 155–185.
  • [12] M. Ahmed, A.Q. Malik, S.A. Rofi, Z.X. Huang, Penetration evaluation of explosively formed projectiles through air and water using insensitive munition: simulative and experimental studies, Eng. Technol. Appl. Sci. Res. 6 (1) (2016) 913–916.
  • [13] O. Jeremić, M. Milinović, M. Marković, B. Rašuo, Analytical and numerical method of velocity fields for the explosively formed projectiles, FME Trans. 45 (1) (2017) 38–44.
  • [14] E.L. Baker, C. Chin, B.E. Fuchs, J. Pham, Scalable parallel computation of explosively formed penetrators (EFPs), WIT Trans. Model. Simul. 45 (2007) 163–170.
  • [15] L. Olovsson, A. Helte, GRALE2D – an explicit finite element code for two-dimensional plane and axi-symmetric multimaterial ALE simulations, WIT Trans. Model. Simul. 40 (2005) 137–145.
  • [16] Li Yangjun, Wang Guoweiping, Lian Gao, Su-jie, Study on explosively formed projectiles test system, in: Proc. The 2nd International Conference on Computer Science and Electronics Engineering, 2013.
  • [17] R. Rolc, J. Buchar, Z. Akstein, Influence of impacting explosively formed projectiles on long rod projectiles, in: Proc. 26th International Symposium on Ballistic, 2011.
  • [18] V.A. Veldanov, S.V. Fedorov, A.Y. Daurskikh, M.A. Maximov, M.Y. Sotskiy, V.S. Kozlov, High-speed penetration of metal blade projectiles, in: Proc. 28th International Symposium on Ballistics, 2014.
  • [19] Y. Sreenivas Rao, A. Padmaja, Yashpol Singh, A study high velocity impact on layered target on different angles by on explosively formed projectiles (EFP), in: Proc. 28th International Symposium on Ballistic, 2014.
  • [20] H.J. Kim, Y.S. Yi, L.J. Park, Analysis of forming characteristics of Ta EFP according to material model, Proc. EPJ Web of Conferences 94 (2015) 04060.
  • [21] H. Miyoshi, H. Ohba, H. Kitamura, T. Inoue, T. Hiroe, Improvement of penetration performance of linear shaped charges, WIT Trans. Model. Simul. 40 (2005) 159–169.
  • [22] G. Hussain, A. Hameed, J.G. Hetherington, A.Q. Malik, K. Sanaullah, The explosively formed projectile (EFP) as a standoff sea mine neutralization device, J. Energet. Mater. 31 (2) (2013) 100–114.
  • [23] J. Liu, W. Gu, M. Lu, H. Xu, S. Wu, Formation of explosively formed penetrator with fins and its flight characteristics, Defence Technol. 10 (2) (2014) 119–123.
  • [24] A. Wisniewski, Technological problems encountered during the elaboration of a warhead component with a diaphragm, Cent. Eur. J. Energet. Mater. 10 (3) (2013) 439–452.
  • [25] Y.-X. Nan, J.-W. Jiang, S.-Y. Wang, J.-B. Men, D.-P. Chen, Penetration capability of shaped charge loaded with different high-energy explosives, in: Proc. 28th International Symposium on Ballistics, 2014.
  • [26] X. Zu, Z. Huanga, C. Zhu, Q. Xiao, Study of detonation wave con tours in EFP war head, in: Proc. 29th International Symposium on Ballistics, 2016.
  • [27] W. Barnat, T. Niezgoda, R. Panowicz, K. Sybilski, The influence of conical composite filling on energy absorption during the progressive fracture process, WIT Trans. Model. Simul. 51 (2011) 645–656.
  • [28] E. Krzystala, A. Mezyk, S. Kciuk, Minimisation of the explosion shock wave load onto the occupants inside the vehicle during trinitrotoluene charge blast, Int. J. Injury Control Safety Promot. 23 (2) (2016) 170–178.
  • [29] A. Kurzawa, J.W. Kaczmar, Bending strength of composite materials with EN AC-44200 matrix reinforced with Al2O3 particles,, Arch. Foundry Eng. 15 (1) (2015) 61–64.
  • [30] J.W. Kaczmar, A. Kurzawa, The effect of a-alumina particles on the properties of EN AC-44200 Al alloy based composite materials, J. Achiv. Mater. Manuf. Eng. 55 (1) (2012) 39–44.
  • [31] J.W. Kaczmar, K. Granat, A. Kurzawa, E. Grodzka, Physical properties of copper based MMC strengthened with alumina, Arch. Foundry Eng. 14 (2) (2014) 85–90.
  • [32] Y. Quirion, B. Bettencourt, F. Rondot, E. Petitpas, K.T. Pierre, On the relevance of blast effect when testing a protective solution against an EFP threat, in: Proc. 28th International Symposium on Ballistics, 2014.
  • [33] A. Morka, J.W. Wekezer, Analysis of the kinetic energy transfer to the target during impact of the antitank projectiles, WIT Trans. Model. Simul. 40 (2005) 31–40.
  • [34] http://www.belma.pl/uploads/products/products530.pdf [accessed 03.01.17].
  • [35] Operation sheet, Armox 370T Class 1, ARMOX Protection Plate, SAAB, 2016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8da38c28-70f4-4616-b15d-91566146d65d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.