Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
2018 | Vol. 24, nr 1 | 1--16
Tytuł artykułu

Deferred weighted A-statistical convergence based upon the (p,q)-Lagrange polynomials and its applications to approximation theorems

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Recently, the notion of positive linear operators by means of basic (or q-) Lagrange polynomials and A-statistical convergence was introduced and studied in [M. Mursaleen, A. Khan, H. M. Srivastava and K. S. Nisar, Operators constructed by means of q-Lagrange polynomials and A-statistical approximation, Appl. Math. Comput. 219 2013, 12, 6911-6918]. In our present investigation, we introduce a certain deferred weighted A-statistical convergence in order to establish some Korovkin-type approximation theorems associated with the functions 1, t and t2 defined on a Banach space C[0,1] for a sequence of (presumably new) positive linear operators based upon (p,q)-Lagrange polynomials. Furthermore, we investigate the deferred weighted A-statistical rates for the same set of functions with the help of the modulus of continuity and the elements of the Lipschitz class. We also consider a number of interesting special cases and illustrative examples in support of our definitions and of the results which are presented in this paper.
Wydawca

Rocznik
Strony
1--16
Opis fizyczny
Bibliogr. 36 poz.
Twórcy
  • Department of Mathematics and Statistics, University of Victoria, Victoria, BC, V8W 3R4, Canada, harimsri@math.uvic.ca
  • Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, P. R. China
autor
  • Department of Mathematics, Veer Surendra Sai University of Technology, Burla 768018, Odisha, India, bidumath.05@gmail.com
autor
  • Department of Mathematics, National Institute of Science and Technology, Palur Hills, Golanthara 761008, Odisha, India, umakanta_misra@yahoo.com
Bibliografia
  • [1] R. P. Agnew, On deferred Cesàro means, Ann. of Math. (2) 33 (1932), no. 3, 413-421.
  • [2] A. Aral and O. Doğru, Bleimann, Butzer, and Hahn operators based on the q-integers, J. Inequal. Appl. 2007 (2007), Article ID 79410.
  • [3] A. Aral and V. Gupta, On the q analogue of Stancu-beta operators, Appl. Math. Lett. 25 (2012), no. 1, 67-71.
  • [4] C. Belen and S. A. Mohiuddine, Generalized weighted statistical convergence and application, Appl. Math. Comput. 219 (2013), no. 18, 9821-9826.
  • [5] J. Boos, Classical and Modern Methods in Summability, Oxford Math. Monogr., Oxford University Press, Oxford, 2000.
  • [6] N. L. Braha, V. Loku and H. M. Srivastava, Λ2-weighted statistical convergence and Korovkin and Voronovskaya type theorems, Appl. Math. Comput. 266 (2015), 675-686.
  • [7] N. L. Braha, H. M. Srivastava and S. A. Mohiuddine, A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Vallée Poussin mean, Appl. Math. Comput. 228 (2014), 162-169.
  • [8] W.-C. C. Chan, C.-J. Chyan and H. M. Srivastava, The Lagrange polynomials in several variables, Integral Transforms Spec. Funct. 12 (2001), no. 2, 139-148.
  • [9] E. E. Duman, A q-extension of the Erkus-Srivastava polynomials in several variables, Taiwanese J. Math. 12 (2008), no. 2, 539-543.
  • [10] E. Erkuş, O. Duman and H. M. Srivastava, Statistical approximation of certain positive linear operators constructed by means of the Chan-Chyan-Srivastava polynomials, Appl. Math. Comput. 182 (2006), no. 1, 213-222.
  • [11] S. Ersan and O. Doğru, Statistical approximation properties of q-Bleimann, Butzer and Hahn operators, Math. Comput. Model. 49 (2009), no. 7-8, 1595-1606.
  • [12] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
  • [13] A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math. 95 (1981), no. 2, 293-305.
  • [14] A. D. Gadjiev and C. Orhan, Some approximation theorems via statistical convergence, Rocky Mountain J. Math. 32 (2002), no. 1, 129-138.
  • [15] V. Gupta and C. Radu, Statistical approximation properties of q-Baskakov-Kantorovich operators, Cent. Eur. J. Math. 7 (2009), no. 4, 809-818.
  • [16] U. Kadak, N. L. Braha and H. M. Srivastava, Statistical weighted B-summability and its applications to approximation theorems, Appl. Math. Comput. 302 (2017), 80-96.
  • [17] V. Karakaya and T. A. Chishti, Weighted statistical convergence, Iran. J. Sci. Technol. Trans. A Sci. 33 (2009), no. 3, 219-223.
  • [18] N. Mahmudov and P. Sabancigil, A q-analogue of the Meyer-König and Zeller operators, Bull. Malays. Math. Sci. Soc. (2) 35 (2012), no. 1, 39-51.
  • [19] S. A. Mohiuddine, Statistical weighted A-summability with application to Korovkin’s type approximation theorem, J. Inequal. Appl. 2016 (2016), Article ID 101.
  • [20] M. Mursaleen, A. Alotaibi and K. J. Ansari, On a Kantorovich variant of (p, q)-Szász-Mirakjan operators, J. Funct. Spaces 2016 (2016), Article ID 1035253.
  • [21] M. Mursaleen, K. J. Ansari and A. Khan, On (p, q)-analogue of Bernstein operators, Appl. Math. Comput. 266 (2015), 874-882.
  • [22] M. Mursaleen, K. J. Ansari and A. Khan, Some approximation results by (p, q)-analogue of Bernstein-Stancu operators, Appl. Math. Comput. 264 (2015), 392-402.
  • [23] M. Mursaleen, V. Karakaya, M. Ertürk and F. Gürsoy, Weighted statistical convergence and its application to Korovkin type approximation theorem, Appl. Math. Comput. 218 (2012), no. 18, 9132-9137.
  • [24] M. Mursaleen and A. Khan, Statistical approximation properties of modified q-Stancu-beta operators, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), no. 3, 683-690.
  • [25] M. Mursaleen, A. Khan, H. M. Srivastava and K. S. Nisar, Operators constructed by means of q-Lagrange polynomials and A-statistical approximation, Appl. Math. Comput. 219 (2013), no. 12, 6911-6918.
  • [26] M. Mursaleen, F. Khan and A. Khan, Approximation by (p, q)-Lorentz polynomials on a compact disk, Complex Anal. Oper. Theory 10 (2016), no. 8, 1725-1740.
  • [27] M. Mursaleen, M. Nasiruzzaman and A. Nurgali, Some approximation results on Bernstein-Schurer operators defined by (p, q)-integers, J. Inequal. Appl. 2015 (2015), Article ID 49.
  • [28] M. Örkcü and O. Doğru, Weighted statistical approximation by Kantorovich type q-Szász-Mirakjan operators, Appl. Math. Comput. 217 (2011), no. 20, 7913-7919.
  • [29] M. A. Özarslan, O. Duman and H. M. Srivastava, Statistical approximation results for Kantorovich-type operators involving some special polynomials, Math. Comput. Model. 48 (2008), no. 3-4, 388-401.
  • [30] C. Radu, Statistical approximation properties of Kantorovich operators based on q-integers, Creat. Math. Inform. 17 (2008), no. 2, 75-84.
  • [31] H. M. Srivastava and M. Et, Lacunary statistical convergence and strongly lacunary summable functions of order α, Filomat 31 (2017), no. 6, 1573-1582.
  • [32] H. M. Srivastava, B. B. Jena, S. K. Paikray and U. K. Misra, Generalized equi-statistical convergence of the deferred Nörlund summability and its applications to associated approximation theorems, Rev. Real Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM(2017), DOI 10.1007/s13398-017-0442-3.
  • [33] H. M. Srivastava, B. B. Jena, S. K. Paikray and U. K. Misra, A certain class of weighted statistical convergence and associated Korovkin-type approximation theorems involving trigonometric functions, Math. Methods Appl. Sci. 41 (2018), no. 2, 671-683.
  • [34] H. M. Srivastava, M. Mursaleen, A. M. Alotaibi, M. Nasiruzzaman and A. A. H. Al-Abied, Some approximation results involving the q-Szász-Mirakjan-Kantorovich type operators via Dunkl’s generalization, Math. Methods Appl. Sci. 40 (2017), no. 15, 5437-5452.
  • [35] H. M. Srivastava, M. Mursaleen and A. Khan, Generalized equi-statistical convergence of positive linear operators and associated approximation theorems, Math. Comput. Model. 55 (2012), no. 9-10, 2040-2051.
  • [36] H. Steinhaus, Sur la convergence ordinaire et la convergence asymptotique, Colloq. Math. 2 (1951), 73-74.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8d8e073b-b3be-47ce-808d-614075785595
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.