Czasopismo
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Warianty tytułu
Języki publikacji
Abstrakty
This study aimed to analyse the effect of anthropogenic activities on the spatial distribution of total nitrogen (TN) and total phosphate (TP) in Lake Maninjau, Indonesia, during the dry season. Sampling was carried out at ten observation locations representative for various activities around the lake. Cluster analysis and ANOVA were used to classify pollutant sources and observe differences between TN and TP at each site. Concentrations of TN and TP are categorised as oligotrophic-eutrophic. The ANOVA showed spatially that some sampling locations, such as the Tanjung Sani River, floating net cages, and hydropower areas have different TN concentrations. At the same time, TP levels were consistently significantly different across sampling sites. ANOVA and cluster analysis confirmed that floating net cages were the first cluster and the primary contributor to TN and TP. The second and third clusters come from anthropogenic activities around the lake, such as agriculture, settlement, and livestock. The fourth cluster with the lowest TN and TP is the river that receives the anthropogenic activity load but has a high flow velocity. The cluster change analysis needs to be conducted when there are future changes in the composition of floating net cages, agriculture, and settlements.
Czasopismo
Rocznik
Tom
Strony
71--78
Opis fizyczny
Bibliogr. 41 poz., mapa, rys., tab., wykr.
Twórcy
autor
- Universitas Andalas, Department of Environmental Engineering, 25163, Padang, Indonesia, putisrikomala@eng.unand.ac.id
autor
- Universitas Andalas, Department of Environmental Engineering, 25163, Padang, Indonesia, zulkarnaini@eng.unand.ac.id
autor
- Universitas Universal, Department of Environmental Engineering, 29432, Batam, Indonesia, indahroselyn@gmail.com
autor
- Doctoral Student of Environmental Engineering, Institut Teknologi Bandung, 40132, Bandung, Indonesia, aitekling015@gmail.com
Bibliografia
- Alexander, R.B., Smith, R.A. and Schwarz, G.E. (2000) “Effect of stream channel size on the delivery of nitrogen to the Gulf of Mexico,” Nature, 403, pp. 758–761.
- Anda de, J. et al. (2019) “Morphometric and water quality features of Lake Cajititlan, Mexico,” Environmental Monitoring and Assessment, 191, 2. Available at: https://doi.org/10.1007/s10661-018-7163-8.
- APHA (2017) Standard methods for the examination of water and wastewater. 21st edn. Washington D.C.: American Public Health Association.
- Badan Pusat Statistik Kabupaten Agam (2019) Kecamatan Tanjung Raya dalam Angka 2019. Available at: https://agamkab.bps.go.id/publication/2019/09/26/7dbbb9c46b344f103c5f1e4c/kecamatan-tanjung-raya-dalam-angka-2019.html (Accessed: August 05, 2023).
- Barakat, A. et al. (2016) “Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques,” International Soil and Water Conservation Research, 4(4), pp. 284–292. Available at: https://doi.org/10.1016/j.iswcr.2016.11.002.
- Chen, Y. et al. (2012) “Spatial and temporal variations in nitrogen and phosphorous nutrients in the Yangtze River Estuary,” Marine Pollution Bulletin, 64(10), pp. 2083–2089. Available at: https://doi.org/10.1016/j.marpolbul.2012.07.020.
- Dermiyati, D. et al. (2016) “Effectiveness of Organonitrofos Plus fertilizer on sweet corn and soil chemical properties of Ultisols,” Journal of Tropical Soils, 21(1), pp. 9–17. Available at: http://dx.doi.org/10.5400/jts.2016.v21i1.9-17.
- Eimers, M.C. et al. (2023) “Phosphorus and nitrogen deposition within a large transboundary watershed: Implications for nutrient stoichiometry and lake vs watershed budgets,” Journal of Great Lakes Research, 49, pp. 44–52. Available at: https://doi.org/10.1016/j.jglr.2022.08.011.
- Han, C. et al. (2020) “Geochemistry of phosphorus release along transect of sediments from a tributary backwater zone in the Three Gorges Reservoir,” Science of The Total Environment, 722, 136964. Available at: https://doi.org/10.1016/j.scitotenv.2020.136964.
- HELCOM (2018) First version of the ‘State of the Baltic Sea’ report – June 2017 – to be updated in 2018. Available at: http://stateofthebaltic-sea.helcom.fi (Accessed: September 17, 2020).
- Henny, C. and Nomosatryo, S. (2016) “Changes in water quality and trophic status associated with cage aquaculture in Lake Maninjau, Indonesia,” IOP Earth and Environmental Science, 31(1), 012027, pp. 1–9. Available at: https://doi.org/10.1088/1755-1315/31/1/012027.
- Hong, B. et al. (2017) “Advances in NANI and NAPI accounting for the Baltic drainage basin: spatial and temporal trends and relationships to watershed TN and TP fluxes, “Biogeochemistry, 133, pp. 245–261. Available at: https://doi.org/10.1007/s10533-017-0330-0.
- Islam, M.S. (2005) “Nitrogen and phosphorus budget in coastal and marine cage aquaculture and impacts of effluent loading on ecosystem: review and analysis towards model development,” Marine Pollution Bulletin, 50(1), pp. 48–61. Available at: https://doi.org/10.1016/j.marpolbul.2004.08.008.
- Junaidi, Syandri, H. and Azrita (2014) “Loading and distribution of organic materials in Maninjau Lake West Sumatra Province- Indonesia,” Journal of Aquaculture Research & Development, 5(7), pp. 1–4.
- Kementerian Lingkungan Hidup (2011) Profil 15 Danau Prioritas Nasional 2010–2014 Kementerian Lingkungan Hidup [Profile of 15 National Priority Lakes 2010-2014 Ministry of Environment]. Available at: https://menyelamatkandanaulimboto.files.wordpress.com/2011/11/gab-profil-15-danau_edit5_fix-cetak_.pdf (Accessed: February 9, 2020).
- Khatri, N. and Tyagi, S. (2015) “Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas,” Frontiers in Life Science, 8(1), pp. 23–39. Available at: https://doi.org/10.1080/21553769.2014.933716.
- Khim, B.-K., Jung, H.M. and Cheong, D. (2005) “Recent variations in sediment organic carbon content in Lake Soyang (Korea),” Limnology, 6(1), pp. 61–66. Available at: https://doi.org/10.1007/s10201-004-0134-5.
- Komala, P.S., Silvia, S. and Windi, S. (2023) “Phytoplankton dynamics and its relation to physicochemical parameters in the dry season of Maninjau Lake, West Sumatera, Indonesia,” Journal of Ecological Engineering, 24(9), pp. 218–231. Available at: https://doi.org/10.12911/22998993/169233.
- Kurniati, R.I., Komala, P.S. and Zulkarnaini, Z. (2021) “Analisis beban pencemar total nitrogen dan total fosfat akibat aktivitas antropogenik di Danau Maninjau [Analysis of total nitrogen and total phosphate pollutant loads due to anthropogenic activities in Lake Maninjau],” Jurnal Ilmu Lingkungan, 19(2), pp. 355–364. Available at: https://doi.org/10.14710/jil.19.2.355-364.
- Li, Y. et al. (2021) “Sedimentary organic carbon and nutrient distributions in an endorheic lake in semiarid area of the Mongolian Plateau,” Journal of Environmental Management, 296, 113184. Available at: https://doi.org/10.1016/j.jenvman.2021.113184.
- Li, X., Sha, J. and Wang, Z.-L. (2017) “Chlorophyll-A prediction of lakes with different water quality patterns in China based on hybrid neural networks,” Water, 9(7), 524, pp. 1–13. Available at: https://doi.org/10.3390/w9070524.
- Liu, W.-C., Yu, H.-L. and Chung, C.-E. (2011) “Assessment of water quality in a subtropical alpine lake using multivariate statistical techniques and geostatistical mapping: A case study,” International Journal of Environmental Research and Public Health, 8(4), pp. 1126–1140. Available at: https://doi.org/10.3390/ijerph8041126.
- Moore, J.W. et al. (2003) “Lake eutrophication at the urban fringe, Seattle region, USA,” AMBIO: A Journal of the Human Environment, 32(1), pp. 13–18. Available at: https://doi.org/10.1579/0044-7447-32.1.13.
- Murphy, J. and Sprague, L. (2019) “Water-quality trends in US rivers: Exploring effects from streamflow trends and changes in watershed management,” Science of The Total Environment, 656, pp. 645–658. Available at: https://doi.org/10.1016/j.scitotenv.2018.11.255.
- Pawar, V., Matsuda, O. and Fujisaki, N. (2002) “Relationship between feed input and sediment quality of the fish cage farms,” Fisheries Science, 68(4), pp. 894–903. Available at: https://doi.org/10.1046/j.1444-2906.2002.00508.x.
- Peraturan (2009) Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor 28 Tahun 2009 Tentang Daya Tampung Beban Pencemaran Air Danau dan/atau Waduk [Regulation of the Minister of Environment and Forestry No. 28 of 2009 on Water Pollution Load Capacity of Lakes and/or Reservoirs]. Available at: https:// jdih.maritim.go.id/cfind/source/files/permen-lhk/mlh-p.28.pdf (Accessed: August 19, 2020).
- Razmkhah, H., Abrishamchi, A. and Torkian, A. (2010) “Evaluation of spatial and temporal variation in water quality by pattern recognition techniques: A case study on Jajrood River (Tehran, Iran),” Journal of Environmental Management, 91(4), pp. 852–860. Available at: https://doi.org/10.1016/j.jenvman.2009.11.001.
- Robertson, D.M. and Saad, D.A. (2011) “Nutrient inputs to the Laurentian Great Lakes by source and watershed estimated using SPARROW watershed models,” Journal of the American Water Resources Association (JAWRA), 47(5), pp. 1011–1033. Available at: https://doi.org/10.1111/j.1752-1688.2011.00574.x.
- SNI 06.6989.31.2005 Air dan air limbah – Bagian 57: Cara uji Kadar fosfat dengan spektrofotometer secara asam askorbat (Bahasa) [How to test phosphate levels with an ascorbic acid spectrophotometer]. Jakarta: Badan Standardisasi Nasional.
- SNI 6989.57:2008 Air dan air limbah – Bagian 57: Metoda pengambilan contoh air permukaan (Bahasa) [Water and wastewater – Part 57: Surface water sampling methods]. Jakarta: Badan Standardisasi Nasional.
- Syandri, H. (2016) “Kondisi kualitas air pada daerah pemeliharaan ikan keramba jaring apung di Danau Maninjau [Water quality conditions in fish farming areas of floating net cages in Lake Maninjau],” Prosiding Seminar Nasional Tahunan Ke-V Hasil-Hasil Penelitian Perikanan dan Kelautan B3, 6, pp. 301–310.
- Syandri, H. et al. (2017) “Levels of available nitrogen-phosphorus before and after fish mass mortality in Maninjau Lake of Indonesia,” Journal of Fisheries and Aquatic Science, 12(4), pp. 191–196. Available at: https://doi.org/10.3923/jfas.2017.191.196.
- Tao, Y. et al. (2010) “Long-term variations and causal factors in nitrogen and phosphorus transport in the Yellow River, China,” Estuarine, Coastal, and Shelf Science, 86(3), pp. 345–351. Available at: https://doi.org/10.1016/j.ecss.2009.05.014.
- Tiwari, P.K. et al. (2021) “A mathematical model to restore water quality in urban lakes using phoslock,” Discrete Continuous Dynamical Systems – Series B, 26(6), pp. 3143–3175. Available at: https://doi.org/10.3934/dcdsb.2020223.
- Vagnetti, R. et al. (2003) “Self-purification ability of a resurgence stream,” Chemosphere, 52, pp. 1781–1795. Available at: https://doi.org/10.1016/S0045-6535(03)00445-4.
- Varol, M. et al. (2012) “Spatial and temporal variations in surface water quality of the dam reservoirs in the Tigris River basin, Turkey,” Catena, 92, pp. 11–21. Available at: https://doi.org/10.1016/j.catena.2011.11.013.
- Verdegem, M.C.J. (2013) “Nutrient discharge from aquaculture operations in function of system design and production environment,” Review in Aquaculture, 4, pp. 1–14. Available at: https://doi.org/10.1111/raq.12011.
- Wang, C. et al. (2020) “Spatial variations of soil phosphorus forms and the risks of phosphorus release in the water-level fluctuation zone in a tributary of the three gorges reservoir,” Science of The Total Environment, 699, 134124. Available at: https://doi.org/10.1016/j.scitotenv.2019.134124.
- Wu, T. et al. (2019) “Spatial distribution of sediment nitrogen and phosphorus in Lake Taihu from a hydrodynamics-induced transport perspective,” Science of The Total Environment, 650(1), pp. 1554–1565. Available at: https://doi.org/10.1016/j.scitotenv.2018.09.145.
- Wu, Y. et al. (2016) “The fate of phosphorus in sediments after the full operation of the three gorges reservoir, China,” Environmental Pollution, 214, pp. 282–289. Available at: https://doi.org/10.1016/j.envpol.2016.04.029.
- Zhong, J. et al. (2021) “Nitrogen budget at sediment–water interface altered by sediment dredging and settling particles: benefits and drawbacks in managing eutrophication,” Journal of Hazardous Materials, 406, 124691. Available at: https://doi.org/10.1016/j.jhazmat.2020.124691.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8d2db634-a5c8-4e0f-a2bc-184b5c51d4bf