Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
2023 | No. 65 (1) | 86--99
Tytuł artykułu

Model estimates of microplastic potential contamination pattern of the eastern Gulf of Finland in 2018

Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work is focused on the assessment of microplastics transport and distribution in the eastern part of the Gulf of Finland by means of numerical modeling. In the present study only the riverine sources of microplastics are taken into account. The presented model also accounts for possible sink of suspended microplastic particles into sediments due to simple parameterization of biogeochemical processes such as biofouling and ingestion by zooplankton. Two basic scenarios with different initial fall velocities of suspended microplastic particles, 0.2 m/day and 1.2 m/day, are discussed. The distribution of microplastics coming with the riverine waters of the Neva, Luga, and Narva rivers has been investigated, based on a numerical hydrodynamical hindcast of the year 2018. Model simulations show that the transport of suspended microplastics occurs along the northern coast of the considered area more intensively compared to the southern coast, especially in the easternmost shallow part of the gulf. The results are in a good agreement with other studies focused on the microplastic pollution of the Neva Bay, and with available observational data. The presented results and developed model can be useful tools aimed to assess the intensity and mechanisms of microplastic pollution of the eastern Gulf of Finland. The results can be used in the selection of areas for future environmental monitoring of microplastics pollution of the eastern part of the Gulf of Finland.
Słowa kluczowe
Wydawca

Czasopismo
Rocznik
Strony
86--99
Opis fizyczny
Bibliogr. 64 poz., map., rys., tab., wykr.
Twórcy
  • Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
  • Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
Bibliografia
  • 1. Bagaev, A., Mizyuk, A., Khatmullina, L., Isachenko, I., Chubarenko, I., 2017. Anthropogenic fibres in the Baltic Sea water column: Field data, laboratory and numerical testing of their motion. Sci. Total Environ. 599, 560-571. https://doi.org/10.1016/j.scitotenv.2017.04.185
  • 2. Bagaev, A., Khatmullina, L., Chubarenko, I., 2018. Anthropogenic microliter in the Baltic Sea water column. Mar. Pollut. Bull. 129 (2), 918-923. https://doi.org/10.1016/j.marpolbul.2017.10.049
  • 3. Baltic Environmental Database 2021. Baltic Nest Institute, Stockholm University. http://nest.su.se/helcom_plc/ (accessed on 3 Apr 2020).
  • 4. Beer, S., Garm, A., Huwer, B., Dierking, J., Nielsen, T.G., 2018. No increase in marine microplastic concentration over the last three decades - a case study from the Baltic Sea. Sci. Total Environ. 621, 1272-1279. https://doi.org/10.1016/j.scitotenv.2017.10.101
  • 5. Berezina, A., Yakushev, E., Savchuk, O., Vogelsang, C., Staalstrom, A., 2021. Modelling the Influence from Biota and Organic Matter on the Transport Dynamics of Microplastics in the Water Column and Bottom Sediments in the Oslo Fjord. Water 13, 2690. https://doi.org/10.3390/w13192690
  • 6. Besseling, E., Quik, J.T., Sun, M., Koelmans, A.A., 2017. Fate of nano-and microplastic in freshwater systems: A modeling study. Environ. Pollut. 220, 540-548. https://doi.org/10.1016/j.envpol.2016.10.001
  • 7. Blumberg, A.F., Mellor, G.L., 1987. A description of a three-dimensional coastal ocean circulation model. In: Heaps, N. (Ed.), Three-dimensional Coastal Ocean Models. Am. Geophys. Union, 208 pp.
  • 8. Chubarenko, I., Stepanova, N., 2017. Microplastics in sea coastal zone: Lessons learned from the Baltic amber. Environ. Pollut. 224, 243-254. https://doi.org/10.1016/j.envpol.2017.01.085
  • 9. Chubarenko, I.P., Esiukova, E.E., Bagaev, A.V., Bagaeva, M.A., Grave, A.N., 2018. Three-dimensional distribution of anthropogenic microparticles in the body of sandy beaches. Sci. Total Environ. 628-629, 1340-1351. https://doi.org/10.1016/j.scitotenv.2018.02.167
  • 10. Clark, J.R., Cole, M., Lindeque, P.K., Fileman, E., Blackford, J., Lewis, C., Lenton, T.M., Galloway, T.S., 2016. Marine microplastic debris: a targeted plan for understanding and quantifying interactions with marine life. Front. Ecol. Environ. 14 (6), 317-324. https://doi.org/10.1002/fee.1297
  • 11. Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: a review. Mar. Pollut. Bull. 62 (12), 2588-2597. https://doi.org/10.1016/j.marpolbul.2011.09.025
  • 12. Copernicus 2021. Marine environment monitoring service. https://resources.marine.copernicus.eu/product-detail/ BALTICSEA_REANALYSIS_PHY_003_011/INFORMATION (accessed on 3 Apr 2020).
  • 13. ERA-Interim, 2021. ERA-Interim, reanalysis dataset. The European Centre for Medium-Range Weather Forecasts (ECMWF). Reading, UK.
  • 14. Eremina, T., Ershova, A., Martin, G., Shilin, M., 2018. Marine litter monitoring: review for the Gulf of Finland coast. In: 2018 IEEE/OES Baltic International Symposium (BALTIC), 8. https://doi.org/10.1109/BALTIC.2018.8634860
  • 15. Eriksen, M., Lebreton, L.C.M., Carson, H.S., Thiel, M., Moore, C.J., Borerro, J.C., Galgani, F., Ryan, P.G., Reisser, J., 2014. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 9 (12), e111913. https://doi.org/10.1371/journal.pone.0111913
  • 16. Fischer, R., Lobelle, D., Kooi, M., Koelmans, A., Onink, V., Laufkötter, C., Amaral-Zettler, L., Yool, A., van Sebille, E., 2021. Modeling submerged biofouled microplastics and their vertical trajectories. Biogeosci. Discuss. https://doi.org/10.5194/bg-2021-236, [preprint], (in review).
  • 17. Frias, J.P.G.L., Otero, V., Sobal, P., 2014. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar. Pollut. Bull. 95, 89-95. https://doi.org/10.1016/j.marenvres.2014.01.001
  • 18. Gaspar, P., Gregoris, Y., Lefevre, J.-M., 1990. A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at station Papa and long-term upper ocean study site. J. Geophys. Res. 95 (C9), 179-193. https://doi.org/10.1029/JC095iC09p16179
  • 19. Herrera, A., Asensio, M., Martínez, I., Santana, A., Packard, T., Gómez, M., 2017. Microplastic and tar pollution on three Canary Islands beaches: an annual study. Mar. Pollut. Bull. 129, 494-502. https://doi.org/10.1016/j.marpolbul.2017.10.020
  • 20. Imhof, H.K., Wiesheu, A.C., Anger, P.M., Niessner, R., Ivleva, N.P., Laforsch, C., 2018. Variation in plastic abundance at different lake beach zones-a case study. Sci. Total Environ. 613, 530-537. https://doi.org/10.1016/j.scitotenv.2017.08.300
  • 21. Isaev, A., Vladimirova, O., Eremina, T., Ryabchenko, V., Savchuk, O., 2020. Accounting for dissolved organic nutrients in an SPBEM-2 model: Validation and Verification. Water 12 (5), 1307. https://doi.org/10.3390/w12051307
  • 22. Kaiser, D., Estelmann, A., Kowalski, N., Glockzin, M., Waniek, J.J., 2019. Sinking velocity of sub-millimeter microplastic. Mar. Pollut. Bull. 139, 214220. https://doi.org/10.1016/j.marpolbul.2018.12.035
  • 23. Kaiser, D., Kowalski, N., Waniek, J.J., 2017. Effects of biofouling on the sinking behavior of microplastics. Environ. Res. Lett. 12, 124003. https://doi.org/10.1088/1748-9326/aa8e8b
  • 24. Karbalaei, S., Hanachi, P., Walker, T.R., Cole, M., 2018. Occurrence, sources, human health impacts and mitigation of microplastic pollution. Environ. Sci. Pollut. Res. 25, 36046-36063. https://doi.org/10.1007/s11356-018-3508-7
  • 25. Karlsson, T.M., Vethaak, A.D., Almroth, B.C., Ariese, F., van Velzen, M., Hassellöv, M., Leslie, H.A., 2017. Screening for microplastics in sediment, water, marine invertebrates and fish: Method development and microplastic accumulation. Mar. Pollut. Bull. 122, 403-408. https://doi.org/10.1016/j.marpolbul.2017.06.081
  • 26. Khatmullina, L., Isachenko, I., 2017. Settling velocity of microplastic particles of regular shapes. Mar. Pollut. Bull. 114 (2), 871-880. https://doi.org/10.1016/j.marpolbul.2016.11.024
  • 27. Kolandhasamy, P., Su, L., Li, J., Qu, X., Jabeen, K., Shi, H., 2018. Adherence of microplastics to soft tissue of mussels: A novel way to uptake microplastics beyond ingestion. Sci. Total Environ 610-611, 635-640. https://doi.org/10.1016/j.scitotenv.2017.08.053
  • 28. Kowalski, N., Reichardt, A.M., Waniek, J.J., 2016. Sinking rates of microplastics and potential implications of their alteration by physical, biological, and chemical factors. Mar. Pollut. Bull. 109 (1), 310-319. https://doi.org/10.1016/j.marpolbul.2016.05.064
  • 29. Lebreton, L.M., Greer, S.D., Borrero, J.C., 2012. Numerical modelling of floating debris in the world’s oceans. Mar. Pollut. Bull. 64 (3), 653-661. https://doi.org/10.1016/j.marpolbul.2011.10.027
  • 30. Leiser, R., Wu, G., Neu, T.R., Wendt-Potthoff, K., 2020. Biofouling, metal sorption and aggregation are related to sinking of microplastics in a stratified reservoir. Water Res 176, 115748. https://doi.org/10.1016/j.watres.2020.115748
  • 31. Lobelle, D., Kooi, M., Koelmans, A.A., Laufkötter, C., Jongedijk, C.E., Kehl, C., van Sebille, E., 2021. Global modeled sinking characteristics of biofouled microplastic. J. Geophys. Res.-Oceans 126 (4), e2020JC017098. https://doi.org/10.1029/2020JC017098
  • 32. Losch, M., Menemenlis, D., Campin, J.-M., Heimbach, P., Hill, C., 2010. On the formulation of sea-ice models. Part 1: Effects of different solver implementations and parameterizations. Ocean Modelling 33 (1-2), 129-144. https://doi.org/10.1016/j.ocemod.2009.12.008
  • 33. Lusher, A.L., Hernandez-Milian, G., O’Brien, J., Berrow, S., O’Connor, I., Officer, R., 2015. Microplastic and macroplastic ingestion by a deep diving, oceanic cetacean: the True’s beaked whale Mesoplodon mirus. Environ. Pollut. 199, 185-191. https://doi.org/10.1016/j.envpol.2015.01.023
  • 34. Marshall, J., Adcroft, A., Hill, C., Perelman, L., Heisey, C., 1997. A finite-volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers. J. Geophys. Res 102 (C3), 5753-5766. https://doi.org/10.1029/96JC02775
  • 35. Martyanov, S.D., Ryabchenko, V.A., Rybalko, A.E., 2011. Modeling of sediment resuspension in the Neva Bay. Proc. Russian State Hydrometeorol. Univ. 20, 13-26, (in Russian). http://www.rshu.ru/university/notes/rggmu_uchenye_zapiski_20.pdf
  • 36. Martyanov, S.D, Ryabchenko, V.A., 2013. Simulation of the Resuspension and Transport of Bottom Sediments in the Neva Bay Using a 3D Circulation Model. Fundamentalnaya i Prikladnaya Gidrofizika 6 (4), 32-43, (in Russian). http://hydrophysics.info/?p=1660&lang=en
  • 37. Martyanov, S., 2014. Modeling of sediment resuspension in Neva Bay during strong wind events. In: IEEE/OES Baltic Symposium 2014 ‘BALTIC’, 1-5. https://doi.org/10.1109/BALTIC.2014.6887882
  • 38. Martyanov, S., Ryabchenko, V., 2016. Bottom sediment resuspension in the easternmost Gulf of Finland in the Baltic Sea: A case study based on three-dimensional modeling. Cont. Shelf Res. 117, 126-137. https://doi.org/10.1016/j.csr.2016.02.011
  • 39. Martyanov, S.D., Dvornikov, A.Y., Ryabchenko, V.A., Sein, D.V., 2019b. Modeling of Sediment Transport in Bothnian Bay in the Vicinity of the Nuclear Power Plant ‘Hanhikivi-1’ Construction Site. J. Mar. Sci. Eng. 7, 229. https://doi.org/10.3390/jmse7070229
  • 40. Martyanov, S.D., Ryabchenko, V.A., Ershova, A.A., Eremina, T.R., Martin, G., 2019. On the assessment of microplastic distribution in the eastern part of the Gulf of Finland. Fundamentalnaya i Prikladnaya Gidrofizika 12 (4), 32-41. https://doi.org/10.7868/S207366731904004X
  • 41. Maximenko, N., Hafner, J., Niiler, P., 2012. Pathways of marine debris derived from trajectories of Lagrangian drifters. Mar. Pollut. Bull. 65 (1-3), 51-62. https://doi.org/10.1016/j.marpolbul.2011.04.016
  • 42. Murphy, F., Ewins, C., Carbonnier, F., Quinn, B., 2016. Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environ. Sci. Technol. 50, 5800-5808. https://doi.org/10.1021/acs.est.5b05416
  • 43. Naji, A., Esmaili, Z., Khan, F.R., 2017. Plastic debris and microplastics along the beaches of the Strait of Hormuz, Persian Gulf. Mar. Pollut. Bull. 114 (2), 1057-1062. https://doi.org/10.1016/j.marpolbul.2016.11.032
  • 44. Obbard, R.W., Sadri, S., Wong, Y.Q., Khitun, A.A., Baker, I., Thompson, R.C., 2014. Global warming releases microplastic legacy frozen in Arctic Sea ice. Earth’s Future 2 (6), 315-320. https://doi.org/10.1002/2014EF000240
  • 45. Obbard, R.W., 2018. Microplastics in polar regions: the role of long-range transport. Current Opinion in Environmental Sci. Health 1, 24-29. https://doi.org/10.1016/j.coesh.2017.10.004
  • 46. Pozdnyakov, S.R., Ivanova, E.V., Guzeva, A.V., Shalunova, E.P., Martinson, K.D., Tikhonova, D.A., 2020. Studying the Concentration of Microplastic Particles in Water, Bottom Sediments and Subsoils in the Coastal Area of the Neva Bay, the Gulf of Finland. Water Resour. 47, 599-607. https://doi.org/10.1134/S0097807820040132
  • 47. Quik, J.T.K., de Klein, J.J.M., Koelmans, A.A., 2015. Spatially explicit fate modelling of nanomaterials in natural waters. Water Res. 80, 200-208. https://doi.org/10.1016/j.watres.2015.05.025
  • 48. Rochman, C.M., Tahir, A., Williams, S.L., Baxa, D.V., Lam, R., Miller, J.T., Teh, F., Werorilangi, S., Teh, S.J., 2015. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Sci. Rep. 5, 14340. https://doi.org/10.1038/srep14340
  • 49. Ryabchenko, V.A., Leontyev, I.O., Ryabchuk, D.V., Sergeev, A.Y., Dvornikov, A.Y., Martyanov, S.D., Zhamoida, V.A., 2018. Mitigation measures of coastal erosion on the Kotlin Island’s shores in the Gulf of Finland, the Baltic Sea. Fundamentalnaya i Prikladnaya Gidrofizika 11 (2), 36-50. https://doi.org/10.7868/S207366731802003X
  • 50. Savchuk, O.P., 2002. Nutrient biogeochemical cycles in the Gulf of Riga: scaling up field studies with a mathematical model. J. Mar. Syst. 32 (4), 253-280. https://doi.org/10.1016/S0924-7963(02)00039-8
  • 51. Schernewski, G., Radtke, H., Hauk, R., Baresel, C., Olshammar, M., Osinski, R., Oberbeckmann, S., 2020. Transport and Behavior of Microplastics Emissions from Urban Sources in the Baltic Sea. Front. Environ. Sci. 8, 579361. https://doi.org/10.3389/fenvs.2020.579361
  • 52. Sterl, M.F., Delandmeter, P., van Sebille, E., 2020. Influence of barotropic tidal currents on transport and accumulation of floating microplastics in the global open ocean. J. Geophys. Res.-Oceans 125 (2), e2019JC015583. https://doi.org/10.1029/2019JC015583
  • 53. Stevens, D.P., 1990. On open boundary conditions for three-dimensional primitive equation ocean circulation models. Geophys. Astrophys. Fl. Dyn. 51, 103-133. https://doi.org/10.1080/03091929008219853
  • 54. Stolte, A., Forster, S., Gerdts, G., Schubert, H., 2015. Microplastic concentrations in beach sediments along the German Baltic coast. Mar. Pollut. Bull. 99, 216-229. https://doi.org/10.1016/j.marpolbul.2015.07.022
  • 55. Talvitie, J., Heinonen, M., Pääkkönen, J.J., Vahtera, E., Mikola, A., Setälä, O., Vahala, R., 2015. Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland. Baltic Sea, Water Sci. Technol. 72 (9), 1495-1504. https://doi.org/10.2166/wst.2015.360
  • 56. Tanaka, K., Takada, H., 2016. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 6, 34351. https://doi.org/10.1038/srep34351
  • 57. Thompson, R.C., Olsen, Y., Mitchell, R.P., Davis, A., Rowland, S.J., John, A.W.G., McGonigle, D., Russell, A.E, 2004. Lost at sea: where is all the plastic? Science 304 (5672), 838-838. https://doi.org/10.1126/science.1094559
  • 58. Turra, A., Manzano, A., Dias, R.J, Mahiques, M.M., Barbosa, L., Balthazar-Silva, D., Moreira, F.T., 2014. Three-dimensional distribution of plastic pellets in sandy beaches: shifting paradigms. Sci. Rep. 4, 4435. https://doi.org/10.1038/srep04435
  • 59. Vankevich, R.E., Sofina, E.V., Eremina, T.E., Ryabchenko, V.A., Molchanov, M.S., Isaev, A.V., 2016. Effects of lateral processes on the seasonal water stratification of the Gulf of Finland: 3-D NEMO-based model study. Ocean Sci. 12, 987-1001. https://doi.org/10.5194/os-12-987-2016
  • 60. Vladimirova, O.M., Eremina, T.R., Isaev, A.V., Ryabchenko, V.A., Savchuk, O.P., 2018. Modelling dissolved organic nutrients in the Gulf of Finland. Fundamentalnaya i Prikladnaya Gidrofizika 11 (4), 90-101. https://doi.org/10.7868/S2073667318040111
  • 61. Westerlund, A., Tuomi, L., Alenius, P., Miettunen, E., Vankevich, R.E., 2018. Attributing mean circulation patterns to physical phenomena in the Gulf of Finland. Oceanologia 60 (1), 16-31. https://doi.org/10.1016/j.oceano.2017.05.003
  • 62. Westerlund, A., Tuomi, L., Alenius, P., Myrberg, K., Miettunen, E., Vankevich, R.E., Hordoir, R., 2019. Circulation patterns in the Gulf of Finland from daily to seasonal timescales. Tellus A 71 (1). https://doi.org/10.1080/16000870.2019.1627149
  • 63. Zhang, H., 2017. Transport of microplastics in coastal seas. Estuar. Coast. Shelf Sci. 199, 74-86. https://doi.org/10.1016/j.ecss.2017.09.032
  • 64. Ziajahromi, S, Neale, P.A., Leusch, F.D.L, 2016. Wastewater treatment plant effluent as a source of microplastics: review of the fate, chemical interactions and potential risks to aquatic organisms. Water Sci. Technol. 74 (10), 2253-2269. https://doi.org/10.2166/wst.2016.414
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.baztech-8d1a0adf-b7be-405b-93c5-3cc0731fcf67
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.